IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v214y2021ics0951832021002489.html
   My bibliography  Save this article

Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning

Author

Listed:
  • Yang, Hongbing
  • Li, Wenchao
  • Wang, Bin

Abstract

Preventive maintenance and production scheduling are two important and interactive activities in production systems. In this work, the integrated optimization problem of production scheduling for multi-state single-machine production systems experiencing degradation processes is investigated. Preventive maintenance tasks and jobs scheduling are jointly considered to find the optimal production policy by considering the processing costs, the maintenance costs, and the completion rewards, simultaneously. We formulate the integrated optimization problem as Markov decision process framework. R-learning algorithm is introduced to maximize the long-run expected average rewards per time unit over infinite horizon. On the basis of the analysis of the optimal stationary policy, the appropriate condition to perform preventive maintenance following optimal stationary policy is presented. This provides the basis for the improvement in R-learning algorithm. Furthermore, a novel heuristic reinforcement learning method is proposed to deal with the integrated model more efficiently. Finally, we present the simulation results and analysis of the proposed algorithm's performance in terms of the number of job types and machine states. The simulation results and analysis show the effectiveness of the proposed approach for solving the integrated problems.

Suggested Citation

  • Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002489
    DOI: 10.1016/j.ress.2021.107713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021002489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Lei & Song, Sanling & Chen, Xiaohui & Coit, David W., 2016. "Joint optimization of production scheduling and machine group preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 68-78.
    2. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    3. Zied Hajej & Nidhal Rezg & Tarek Askri, 2020. "Joint optimization of capacity, production and maintenance planning of leased machines," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 351-374, February.
    4. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    5. Gosavi, Abhijit, 2004. "Reinforcement learning for long-run average cost," European Journal of Operational Research, Elsevier, vol. 155(3), pages 654-674, June.
    6. Xanthopoulos, A.S. & Koulouriotis, D.E. & Botsaris, P.N., 2015. "Single-stage Kanban system with deterioration failures and condition-based preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 111-122.
    7. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.
    8. Andriotis, C.P. & Papakonstantinou, K.G., 2019. "Managing engineering systems with large state and action spaces through deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Liao, Ching-Jong & Shyur, Der-Lin & Lin, Chien-Hung, 2005. "Makespan minimization for two parallel machines with an availability constraint," European Journal of Operational Research, Elsevier, vol. 160(2), pages 445-456, January.
    10. Golmohammadi, Davood, 2015. "A study of scheduling under the theory of constraints," International Journal of Production Economics, Elsevier, vol. 165(C), pages 38-50.
    11. Li, Xueping & Wang, Jiao & Sawhney, Rapinder, 2012. "Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 99-109.
    12. Xiao Wang & Hongwei Wang & Chao Qi, 2016. "Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 325-333, April.
    13. Tapas K. Das & Abhijit Gosavi & Sridhar Mahadevan & Nicholas Marchalleck, 1999. "Solving Semi-Markov Decision Problems Using Average Reward Reinforcement Learning," Management Science, INFORMS, vol. 45(4), pages 560-574, April.
    14. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azimpoor, Samareh & Taghipour, Sharareh & Farmanesh, Babak & Sharifi, Mani, 2022. "Joint Planning of Production and Inspection of Parallel Machines with Two-phase of Failure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Mehryar, Mehdi & Hafezalkotob, Ashkan & Azizi, Amir & Sobhani, Farzad Movahedi, 2023. "Dynamic zoning of the network using cooperative transmission and maintenance planning: A solution for sustainability of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Boumallessa, Zeineb & Chouikhi, Houssam & Elleuch, Mounir & Bentaher, Hatem, 2023. "Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
    14. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    16. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Rasay, Hasan & Taghipour, Sharareh & Sharifi, Mani, 2022. "An integrated Maintenance and Statistical Process Control Model for a Deteriorating Production Process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    2. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Li, Xueping & Wang, Jiao & Sawhney, Rapinder, 2012. "Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 99-109.
    7. Hongming Zhou & Sufen Wang & Faqun Qi & Shun Gao, 2022. "Maintenance modeling and operation parameters optimization for complex production line under reliability constraints," Annals of Operations Research, Springer, vol. 311(1), pages 507-523, April.
    8. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Lee, Jun S. & Yeo, In-Ho & Bae, Younghoon, 2024. "A stochastic track maintenance scheduling model based on deep reinforcement learning approaches," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Peter Seele & Claus Dierksmeier & Reto Hofstetter & Mario D. Schultz, 2021. "Mapping the Ethicality of Algorithmic Pricing: A Review of Dynamic and Personalized Pricing," Journal of Business Ethics, Springer, vol. 170(4), pages 697-719, May.
    15. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Schütz, Hans-Jörg & Kolisch, Rainer, 2012. "Approximate dynamic programming for capacity allocation in the service industry," European Journal of Operational Research, Elsevier, vol. 218(1), pages 239-250.
    17. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    18. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. van Wezel, M.C. & van Eck, N.J.P., 2005. "Reinforcement learning and its application to Othello," Econometric Institute Research Papers EI 2005-47, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:214:y:2021:i:c:s0951832021002489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.