IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024004575.html
   My bibliography  Save this article

A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays

Author

Listed:
  • Mei, Fabin
  • Chen, Hao
  • Yang, Wenying
  • Zhai, Guofu

Abstract

Electromagnetic relays (EMRs) are intricate micro-electromechanical systems characterized by nonlinear behavior and coupling effects between electromagnetic and mechanical forces. Accurately modeling degradation and assessing reliability are crucial yet challenging tasks for ensuring their safe and efficient operation. Current data-driven methods for degradation modeling and reliability assessment often neglect the known physical knowledge regarding EMRs, leading to inaccuracies in modeling and assessment outcomes when data is incomplete. While physics-informed machine learning (PIML) approaches offer a potential solution, common regression models like Gaussian processes (GP) and long short-term memory (LSTM) suffer from underfitting and overfitting, respectively. To address these issues, we presents a hybrid PIML approach for time-dependent reliability assessment based on the emerging variational autoencoder (VAE) framework. This approach combines the advantages of GP-based methods that enable probabilistic representation with deep neural network-based methods that are more flexible and computationally efficient. Finally, we validate our proposed approach using real-world engineering data, demonstrating its superior accuracy and computational efficiency compared to state-of-the-art methods.

Suggested Citation

  • Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004575
    DOI: 10.1016/j.ress.2024.110385
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004575
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.