IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003259.html
   My bibliography  Save this article

A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force

Author

Listed:
  • Bai, Guo-Peng
  • Er, Guo-Kang
  • Iu, Vai Pan

Abstract

A novel constrained optimization-oriented exponential–polynomial–closure (CO-EPC) method is developed to investigate the ship roll-motion with non-smooth damping and sinusoidal restoring moments under stochastic wave excitations. The ’non-smooth damping’ and ’sinusoidal restoring moments’ refer to the damping force and restoring force of the system, respectively, which are mathematically expressed using non-smooth and sinusoidal functions. The propagation of uncertainty in the system is governed by the Fokker–Plank–Kolmogorov (FPK) equation, as the presence of stochastic wave excitation induces Markovian behavior in the system responses. The solution of FPK must meet the non-negativity, normalization, and limitation attributes. To fulfill these essential requirements, a novel method has been developed. By deriving the moment functions of the non-smooth terms (for the damping moment part) and the sine terms (for the restoring moment part), the complicated FPK equation is solved. Through two case studies, it is found that the CO-EPC approach demonstrates superior efficiency compared to Monte Carlo simulation and produces more accurate solutions in contrast to the Gaussian closure method. These findings support the effectiveness of CO-EPC in studying the ship roll motion problem under stochastic wave excitations.

Suggested Citation

  • Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003259
    DOI: 10.1016/j.ress.2024.110253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003259
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xinjian & Liu, Zhengjiang & Loughney, Sean & Yang, Zaili & Wang, Yanfu & Wang, Jin, 2022. "Numerical analysis and staircase layout optimisation for a Ro-Ro passenger ship during emergency evacuation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Hao, Peng & Tang, Hao & Wang, Yu & Wu, Tao & Feng, Shaojun & Wang, Bo, 2023. "Stochastic isogeometric buckling analysis of composite shell considering multiple uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Beck, André T. & Rodrigues da Silva, Lucas A. & Miguel, Leandro F.F., 2023. "The latent failure probability: A conceptual basis for robust, reliability-based and risk-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Fu, Shanshan & Yu, Yuerong & Chen, Jihong & Xi, Yongtao & Zhang, Mingyang, 2022. "A framework for quantitative analysis of the causation of grounding accidents in arctic shipping," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    8. R. A. Ibrahim & I. M. Grace, 2010. "Modeling of Ship Roll Dynamics and Its Coupling with Heave and Pitch," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-32, September.
    9. Woloszyk, Krzysztof & Garbatov, Yordan, 2024. "A probabilistic-driven framework for enhanced corrosion estimation of ship structural components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Mauro, Francesco & Vassalos, Dracos & Paterson, Donald, 2022. "Critical damages identification in a multi-level damage stability assessment framework for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    12. Decò, Alberto & Frangopol, Dan M., 2013. "Risk-informed optimal routing of ships considering different damage scenarios and operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 126-140.
    13. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Nguyen, Phong T.T. & Manuel, Lance, 2024. "Uncertainty quantification in low-probability response estimation using sliced inverse regression and polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Fang, Chen & Xu, You-Lin & Li, Yongle & Li, Jinrong, 2024. "Serviceability analysis of sea-crossing bridges under correlated wind and wave loads," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Li, Hua & Xu, Yong & Yue, Xiaole & Kurths, Jürgen, 2019. "Transition-event duration in one-dimensional systems under correlated noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 532(C).
    18. Castellon, Dario Fernandez & Fenerci, Aksel & Petersen, Øyvind Wiig & Øiseth, Ole, 2023. "Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Sun, Yahui & Hong, Ling & Yang, Yongge & Sun, Jian-Qiao, 2018. "Probabilistic response of nonsmooth nonlinear systems under Gaussian white noise excitations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 111-117.
    20. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    21. Betz, Wolfgang & Papaioannou, Iason & Straub, Daniel, 2022. "Bayesian post-processing of Monte Carlo simulation in reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    3. Fang, Chen & Xu, You-Lin & Li, Yongle & Li, Jinrong, 2024. "Serviceability analysis of sea-crossing bridges under correlated wind and wave loads," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    4. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    9. Mutothya, Nicholas Mwilu & Xu, Yong, 2021. "Mean first passage time for diffuse and rest search in a confined spherical domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    10. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    11. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    15. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    18. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Li, Huanhuan & Çelik, Cihad & Bashir, Musa & Zou, Lu & Yang, Zaili, 2024. "Incorporation of a global perspective into data-driven analysis of maritime collision accident risk," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.