IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001571.html
   My bibliography  Save this article

Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration

Author

Listed:
  • Song, Chaolin
  • Xiao, Rucheng
  • Zhang, Chi
  • Zhao, Xinwei
  • Sun, Bo

Abstract

Surrogate model-based reliability analysis aims at building a cheap-to-evaluate mathematical model as a substitute for the original performance function to enhance computational efficiency. Data-driven surrogate models have been popularly studied from a perspective of active learning. On the other hand, Physics-informed Neural Networks, called PINNs, have recently gained much attention as a physics-informed surrogate model to directly solve partial differential equations. Building on the capability of avoiding the simulation of traditional numerical solvers such as the finite element analysis, the PINN-based reliability analysis can achieve highly efficient simulation-free uncertainty quantification. This paper focuses on the development of the PINN-based reliability analysis method and its application in practical engineering applications. Reliability analysis with Importance Sampling-based Adaptive Training Physics-informed Neural Networks (IAT-PINN-RA) is proposed in this work. Compared with the existing PINN-based reliability analysis methods, IAT-PINN-RA introduces a pre-training stage for the establishment of the importance sampling distribution, and therefore achieves better performance when handling rare events. The modeling and reliability analysis of chloride penetration, which can pose serious challenges to the durability of concrete structures, are investigated. A practical example demonstrates the feasibility of using PINNs to model this physical phenomenon and the performance of the proposed method to achieve accurate and efficient reliability analysis results.

Suggested Citation

  • Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001571
    DOI: 10.1016/j.ress.2024.110083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chi & Wang, Zeyu & Shafieezadeh, Abdollah, 2021. "Error Quantification and Control for Adaptive Kriging-Based Reliability Updating with Equality Information," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    5. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    6. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Guo, Tiexin & Wang, Hongji & Li, Jinglai & Wang, Hongqiao, 2024. "Sampling-based adaptive design strategy for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    9. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Wang, Zeyu & Shafieezadeh, Abdollah & Xiao, Xiong & Wang, Xiaowei & Li, Quanwang, 2022. "Optimal monitoring location for tracking evolving risks to infrastructure systems: Theory and application to tunneling excavation risk," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Song, Chaolin & Zhang, Chi & Shafieezadeh, Abdollah & Xiao, Rucheng, 2022. "Value of information analysis in non-stationary stochastic decision environments: A reliability-assisted POMDP approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Zhang, Chi & Shafieezadeh, Abdollah, 2022. "Simulation-free reliability analysis with active learning and Physics-Informed Neural Network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    5. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Chen, Weidong & Xu, Chunlong & Shi, Yaqin & Ma, Jingxin & Lu, Shengzhuo, 2019. "A hybrid Kriging-based reliability method for small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 31-41.
    14. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    15. Xiong, Yifang & Sampath, Suresh, 2021. "A fast-convergence algorithm for reliability analysis based on the AK-MCS," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    16. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    17. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    19. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.