IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002137.html
   My bibliography  Save this article

Adaptive surrogate models with partially observed information

Author

Listed:
  • Xu, Yanwen
  • Renteria, Anabel
  • Wang, Pingfeng

Abstract

Surrogate models have been developed to replace expensive physical models and reduce the computational cost in various engineering applications, such as reliability analysis and uncertainty quantification. Gaussian process (GP) model exhibits superior performance among surrogate models with a distinguishing feature of estimating the uncertainty. However, fully observed datasets are generally required to establish a GP model, which is often scarce and expensive to obtain in complex engineering systems. Partially overserved information is often available and relatively plentiful in the collected datasets, which often contain data from different sources that have multi-fidelity or dimensionality and missing values. Therefore, correctly accounting for the partially observed information is important in order to take advantage of all available information and increase the prediction performance of the surrogate model to be developed. This paper presents a new method for modeling system performance with partially observed information, which integrates the Bayesian Gaussian process latent variable model (BGPLVM) with adaptive sampling to iteratively select new partially observable training sample points to improve the modeling efficiency. A novel adaptive sampling approach considering the missing frame and information cost of the partially observed information is proposed to iteratively select new training sample points and refine the model. To the best of the authors' knowledge, this is the first work designing adaptive sampling and adaptive surrogate modeling approaches for a dataset containing missing values. The numerical experiments demonstrated that the adaptive surrogate modeling method can effectively use all available information including both fully observed and partially observed data points. The developed methodology provides an accurate and cost-effective solution to take advantage of extra partially observed information in developing surrogate models.

Suggested Citation

  • Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002137
    DOI: 10.1016/j.ress.2022.108566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002137
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Radaideh, Majdi I. & Kozlowski, Tomasz, 2020. "Surrogate modeling of advanced computer simulations using deep Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Zhu, Xianming & Lu, Zhenzhou & Yun, Wanying, 2020. "An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Yu Wang & Xiongqing Yu & Xiaoping Du, 2015. "Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, September.
    5. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    9. Wang, Zhenqiang & Jia, Gaofeng, 2020. "Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    10. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Bansal, Parth & Zheng, Zhuoyuan & Shao, Chenhui & Li, Jingjing & Banu, Mihaela & Carlson, Blair E & Li, Yumeng, 2022. "Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Guan, Xuefei, 2024. "Sparse moment quadrature for uncertainty modeling and quantification," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Cui, Da & Wang, Guoqiang & Lu, Yanpeng & Sun, Kangkang, 2020. "Reliability design and optimization of the planetary gear by a GA based on the DEM and Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Sheibani, Mohamadreza & Ou, Ge, 2021. "Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Kröker, Ilja & Oladyshkin, Sergey, 2022. "Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    17. Meng, Yuan & Zhang, Dequan & Shi, Baojun & Wang, Dapeng & Wang, Fang, 2024. "An active learning Kriging model with approximating parallel strategy for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    18. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.