IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832019301711.html
   My bibliography  Save this article

Surrogate modeling of advanced computer simulations using deep Gaussian processes

Author

Listed:
  • Radaideh, Majdi I.
  • Kozlowski, Tomasz

Abstract

The continuous advancements in computer power and computational modeling through high-fidelity and multiphysics simulations add more challenges on assessing their predictive capability. In this work, metamodeling or surrogate modeling through deep Gaussian processes (DeepGP) is performed to construct surrogates of advanced computer simulations drawn from the nuclear engineering area. This work is centered around three major ideas: (1) surrogate modeling through deep Gaussian processes (DeepGP), (2) simulation assessment through surrogate-based uncertainty quantification (UQ) methodologies, and (3) drawing conclusions regarding the underlying uncertainty of the four simulations considered in this paper. First, DeepGP models are trained, optimized, and validated to yield variety of features: (1) achieving high accuracy (small error metrics) on the validation set, (2) automatically capturing the surrogate model uncertainty (i.e. interpolation errors), (3) fitting multiple outputs with different scales simultaneously, (4) handling high dimensional input spaces, and (5) learning from small data amounts. Second, the validated DeepGP surrogates are utilized to efficiently perform UQ tasks such as uncertainty propagation (through Monte Carlo sampling), parameter screening (through Morris screening), and variance decomposition (through Sobol Indices) to investigate the selected simulations. Third, the thermal-hydraulics (fluid flow) results demonstrate the importance of inlet temperature uncertainty in void fraction predictions. For the reactor physics application (fuel depletion/consumption), DeepGP accurately captures the uncertainty in criticality calculations, which is about 0.6% (i.e. a considerable value for this application). For the application of kinetic parameters (nuclear data), DeepGP successfully explains 95% or more of the variance in all 12 outputs. Finally, DeepGP-based UQ analysis of the fuel performance application (materials science) shows the importance of the clad surface temperature, fuel porosity, and linear heat rate in explaining the variance of the maximum fuel centerline and surface temperatures.

Suggested Citation

  • Radaideh, Majdi I. & Kozlowski, Tomasz, 2020. "Surrogate modeling of advanced computer simulations using deep Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019301711
    DOI: 10.1016/j.ress.2019.106731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019301711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, Jack P.C. & Deflandre, David, 2006. "Validation of regression metamodels in simulation: Bootstrap approach," European Journal of Operational Research, Elsevier, vol. 170(1), pages 120-131, April.
    2. Radaideh, Majdi I. & Borowiec, Katarzyna & Kozlowski, Tomasz, 2019. "Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 357-377.
    3. Hawre Jalal & Bryan Dowd & François Sainfort & Karen M. Kuntz, 2013. "Linear Regression Metamodeling as a Tool to Summarize and Present Simulation Model Results," Medical Decision Making, , vol. 33(7), pages 880-890, October.
    4. Erickson, Collin B. & Ankenman, Bruce E. & Sanchez, Susan M., 2018. "Comparison of Gaussian process modeling software," European Journal of Operational Research, Elsevier, vol. 266(1), pages 179-192.
    5. D. Neykov & F. Aydogan & L. Hochreiter & H. Utsuno & F. Kasahara & E. Sartori & M. Martin, 2006. "NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark: Volume I: Specifications," OECD Papers, OECD Publishing, vol. 6(7), pages 1-132.
    6. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    7. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    8. Marc C. Kennedy & Anthony O'Hagan, 2001. "Bayesian calibration of computer models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 425-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    3. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapusuzoglu, Berkcan & Mahadevan, Sankaran, 2021. "Information fusion and machine learning for sensitivity analysis using physics knowledge and experimental data," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Daniel W. Gladish & Daniel E. Pagendam & Luk J. M. Peeters & Petra M. Kuhnert & Jai Vaze, 2018. "Emulation Engines: Choice and Quantification of Uncertainty for Complex Hydrological Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 39-62, March.
    3. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    4. Ye, Dongwei & Nikishova, Anna & Veen, Lourens & Zun, Pavel & Hoekstra, Alfons G., 2021. "Non-intrusive and semi-intrusive uncertainty quantification of a multiscale in-stent restenosis model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    7. Arnst, M. & Goyal, K., 2017. "Sensitivity analysis of parametric uncertainties and modeling errors in computational-mechanics models by using a generalized probabilistic modeling approach," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 394-405.
    8. Radaideh, Majdi I. & Borowiec, Katarzyna & Kozlowski, Tomasz, 2019. "Integrated framework for model assessment and advanced uncertainty quantification of nuclear computer codes under Bayesian statistics," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 357-377.
    9. David Breitenmoser & Francesco Cerutti & Gernot Butterweck & Malgorzata Magdalena Kasprzak & Sabine Mayer, 2023. "Emulator-based Bayesian inference on non-proportional scintillation models by compton-edge probing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    11. Matieyendou Lamboni, 2024. "Optimal Estimators of Cross-Partial Derivatives and Surrogates of Functions," Stats, MDPI, vol. 7(3), pages 1-22, July.
    12. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    13. Nagel, Joseph B. & Rieckermann, Jörg & Sudret, Bruno, 2020. "Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    14. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    15. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    16. Picheny, Victor & Ginsbourger, David, 2014. "Noisy kriging-based optimization methods: A unified implementation within the DiceOptim package," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1035-1053.
    17. Paul Kent & Soroush Abolfathi & Hannah Al Ali & Tabassom Sedighi & Omid Chatrabgoun & Alireza Daneshkhah, 2024. "Resilient Coastal Protection Infrastructures: Probabilistic Sensitivity Analysis of Wave Overtopping Using Gaussian Process Surrogate Models," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    18. Grant Hutchings & Bruno Sansó & James Gattiker & Devin Francom & Donatella Pasqualini, 2023. "Comparing emulation methods for a high‐resolution storm surge model," Environmetrics, John Wiley & Sons, Ltd., vol. 34(3), May.
    19. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    20. Hao Wu & Michael Browne, 2015. "Random Model Discrepancy: Interpretations and Technicalities (A Rejoinder)," Psychometrika, Springer;The Psychometric Society, vol. 80(3), pages 619-624, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832019301711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.