IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024000954.html
   My bibliography  Save this article

AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model

Author

Listed:
  • Lu, Ning
  • Li, Yan-Feng
  • Mi, Jinhua
  • Huang, Hong-Zhong

Abstract

Multi-fidelity modeling is widely available in theoretical research and engineering practice. Although high-fidelity models often necessitate substantial computational resources, they yield more accurate and reliable results. Low-fidelity models are less computationally demanding, while their results may be inaccurate or unreliable. For the reliability analysis based on complex limit state functions, a method based on active learning multi-fidelity Gaussian process model, called AMFGP, is proposed by combining surrogate model with adaptive strategy, ensuring a balance between prediction accuracy and computational cost in terms of both surrogate modeling and active learning: A dependent Gaussian process surrogate model using complete statistical characteristics is developed under the multi-fidelity framework, and the surrogate performances of different single-fidelity and multi-fidelity models with different learning functions are investigated; based on the proposed model, an adaptive strategy considering the dependence between predictions, the model correlation, and the sample density is designed, and the adaptive performance of different learning functions in different models is explored. The proposed method is validated for effectiveness and adaptability in three mathematical examples with different dimensions and demonstrated for efficiency and practicality in an engineering application to aero engine gear.

Suggested Citation

  • Lu, Ning & Li, Yan-Feng & Mi, Jinhua & Huang, Hong-Zhong, 2024. "AMFGP: An active learning reliability analysis method based on multi-fidelity Gaussian process surrogate model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024000954
    DOI: 10.1016/j.ress.2024.110020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    2. Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    5. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Sharma, Neetesh & Gardoni, Paolo, 2022. "Mathematical modeling of interdependent infrastructure: An object-oriented approach for generalized network-system analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Miele, S. & Karve, P. & Mahadevan, S., 2023. "Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    9. Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Mi, Jinhua & Niazi, Sajawal Gul, 2023. "AGP-MCS+D: An active learning reliability analysis method combining dependent Gaussian process and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    10. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    11. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    3. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.
    4. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    5. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    6. Pronzato, Luc, 2019. "Sensitivity analysis via Karhunen–Loève expansion of a random field model: Estimation of Sobol’ indices and experimental design," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 93-109.
    7. Touzani, Samir & Busby, Daniel, 2013. "Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 67-81.
    8. Zhang, Xufang & Pandey, Mahesh D., 2014. "An effective approximation for variance-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 164-174.
    9. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    10. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    11. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    12. Deman, G. & Kerrou, J. & Benabderrahmane, H. & Perrochet, P., 2015. "Sensitivity analysis of groundwater lifetime expectancy to hydro-dispersive parameters: The case of ANDRA Meuse/Haute-Marne site," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 276-286.
    13. Blagojević, Nikola & Didier, Max & Stojadinović, Božidar, 2022. "Quantifying component importance for disaster resilience of communities with interdependent civil infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    15. Wong, Chun Yui & Seshadri, Pranay & Parks, Geoffrey, 2021. "Extremum sensitivity analysis with polynomial Monte Carlo filtering," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Dubreuil, S. & Berveiller, M. & Petitjean, F. & Salaün, M., 2014. "Construction of bootstrap confidence intervals on sensitivity indices computed by polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 263-275.
    17. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    19. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    20. Cremona, Marzia A. & Liu, Binbin & Hu, Yang & Bruni, Stefano & Lewis, Roger, 2016. "Predicting railway wheel wear under uncertainty of wear coefficient, using universal kriging," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 49-59.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024000954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.