IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003404.html
   My bibliography  Save this article

Simulation-free reliability analysis with active learning and Physics-Informed Neural Network

Author

Listed:
  • Zhang, Chi
  • Shafieezadeh, Abdollah

Abstract

Physical phenomena are often described by partial differential equations (PDEs), which have been traditionally solved using computationally demanding finite element, difference, or volume methods to produce labeled data. Due to its multi-query nature, characterization of event probabilities requires many such simulations, which can become prohibitive given the high costs of acquiring labeled data. As opposed to conventional PDE solution methods, Physics-Informed Neural Network (PINN) is directly trained using the physics knowledge encoded in PDEs, and therefore is simulation free. Building on this capability, we propose a simulation-free uncertainty quantification method called adaptively trained PINN for reliability analysis (AT-PINN-RA). We introduce an active learning approach with the dual objective of training PINN for solving PDEs and characterizing the limit state. The approach actively learns from the responses of the PINN model to identify the limit state and subsequently, adaptively shifts the focus of the training of the PINN model to regions of high importance for failure probability characterization to boost the accuracy and efficiency of reliability estimation. The performance of AT-PINN-RA is investigated using four benchmark problems with varying complexities. In all examples, AT-PINN-RA provides accurate estimates of event probabilities with high efficiency.

Suggested Citation

  • Zhang, Chi & Shafieezadeh, Abdollah, 2022. "Simulation-free reliability analysis with active learning and Physics-Informed Neural Network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003404
    DOI: 10.1016/j.ress.2022.108716
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108716?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bourinet, J.-M., 2016. "Rare-event probability estimation with adaptive support vector regression surrogates," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 210-221.
    2. Zhang, Chi & Wang, Zeyu & Shafieezadeh, Abdollah, 2021. "Error Quantification and Control for Adaptive Kriging-Based Reliability Updating with Equality Information," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    4. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    5. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Dehghani, Nariman L. & Jeddi, Ashkan B. & Shafieezadeh, Abdollah, 2021. "Intelligent hurricane resilience enhancement of power distribution systems via deep reinforcement learning," Applied Energy, Elsevier, vol. 285(C).
    7. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Bao, Yuequan & Xiang, Zhengliang & Li, Hui, 2021. "Adaptive subset searching-based deep neural network method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "On confidence intervals for failure probability estimates in Kriging-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    13. Zhao, Wei & Fan, Feng & Wang, Wei, 2017. "Non-linear partial least squares response surface method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 69-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Miele, S. & Karve, P. & Mahadevan, S., 2023. "Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Wang, Jiaqi & Zhang, Limao & Yang, Hui & Liu, Huabei & Skibniewski, Mirosław J., 2024. "Dynamic reliability analysis of Aerial Building Machine under extreme wind loads using improved QBDC-based active learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    6. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    7. Wang, Yangpeng & Li, Shuxiang & Lee, Kangkuen & Tam, Hwayaw & Qu, Yuanju & Huang, Jingyin & Chu, Xianghua, 2023. "Accident risk tensor-specific covariant model for railway accident risk assessment and prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Ma, Yuan-Zhuo & Zhu, Yi-Chen & Li, Hong-Shuang & Nan, Hang & Zhao, Zhen-Zhou & Jin, Xiang-Xiang, 2022. "Adaptive Kriging-based failure probability estimation for multiple responses," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Wang, Zeyu & Shafieezadeh, Abdollah, 2023. "Bayesian updating with adaptive, uncertainty-informed subset simulations: High-fidelity updating with multiple observations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zhang, Chi & Wang, Zeyu & Shafieezadeh, Abdollah, 2021. "Error Quantification and Control for Adaptive Kriging-Based Reliability Updating with Equality Information," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "Real-time high-fidelity reliability updating with equality information using adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    16. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.
    17. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    19. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.