IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007263.html
   My bibliography  Save this article

Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model

Author

Listed:
  • Wu, Jiawei
  • Wan, Liangqi

Abstract

In modern architectural design, reduced beam section moment connections (RBSMC) play a crucial role. However, quantifying the importance of random input variables and failure modes has not been performed to improve RBSMC reliability. Thus, we propose a sensitivity study that evaluates the effect of geometric dimensions on the reliability of the RBSMC. The analysis measures the significance of each random input variable on the reliability of the RBSMC. Then, a reliability predictor, which combines the multiple response Gaussian process (MRGP) with the Monte Carlo simulation (MCS), is introduced to efficiently produce surrogate models for failure surfaces. Based on the well-established surrogate models, the reliability is estimated without additional calling of the original limit state functions. The quadratic regression and analysis of variance are conducted to statistically evaluate the contribution of different variables to the reliability of the RBSMC. The proposal methodology accurately predicts reliability and identifies variables that significantly contribute to reliability. The results show that the proposed methodology is more efficient than existing methods at the early design stage. Furthermore, we applied this methodology to a radius cut RBSMC, which can minimize stress concentration and reduce the possibility of fracture to identify significant input variables for reliability. The computational results and discussions provide useful insights for the design of RBSMC.

Suggested Citation

  • Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007263
    DOI: 10.1016/j.ress.2023.109812
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109812?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Lee, Seunggyu, 2021. "Monte Carlo simulation using support vector machine and kernel density for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    5. Shekhar, Shivang & Ghosh, Jayadipta, 2020. "A metamodeling based seismic life-cycle cost assessment framework for highway bridge structures," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    7. Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Mi, Jinhua & Niazi, Sajawal Gul, 2023. "AGP-MCS+D: An active learning reliability analysis method combining dependent Gaussian process and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    8. Paulino José García-Nieto & Esperanza García-Gonzalo & José Ramón Alonso Fernández & Cristina Díaz Muñiz, 2020. "A New Predictive Model for Evaluating Chlorophyll-a Concentration in Tanes Reservoir by Using a Gaussian Process Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4921-4941, December.
    9. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Castellon, Dario Fernandez & Fenerci, Aksel & Petersen, Øyvind Wiig & Øiseth, Ole, 2023. "Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    3. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Wang, Jie & Zhang, Yangyi & Li, Shunlong & Xu, Wencheng & Jin, Yao, 2024. "Directed network-based connectivity probability evaluation for urban bridges," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    10. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Li, Xin & Yang, Yu & Wu, Zhantao & Yan, Ke & Shao, Haidong & Cheng, Junsheng, 2022. "High-accuracy gearbox health state recognition based on graph sparse random vector functional link network," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.