IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v217y2022ics0951832021006013.html
   My bibliography  Save this article

Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process

Author

Listed:
  • Yang, Yiming
  • Peng, Jianxin
  • Cai, C.S.
  • Zhou, Yadong
  • Wang, Lei
  • Zhang, Jianren

Abstract

Reasonable assessment of structural resistance degradation and reliability is the premise of formulating targeted maintenance strategy of aging structures. In this paper, a Gamma-based stochastic resistance degradation model is developed by incorporating the spatial degradation into a non-stationary degradation process. Then, based on the hazard-function-based reliability analysis method, a novel reliability assessment approach of aging structures is proposed considering stochastic degradation process of resistance. In addition, a simple case analysis of concrete bridge is used to illustrate the application of the proposed method. The case analysis results show that the resistance degradation presents great discontinuities in time and large spatial variability in the middle and later service period of structures. After 50 years of service, the resistance degradation coefficient considering the effect of spatial degradation process is 13.8% lower than that without consideration in this case. Parametric analyses show that an increase of the shape and scale parameters of mean resistance degradation model will significantly increase the cumulative failure probability of structures. This conclusion is also applicable to the non-stationary vehicle load effect model of case bridge. Additionally, ignoring the spatial variability of resistance degradation and the non-stationary nature of the vehicle load effect will overestimate the reliability of aging structures.

Suggested Citation

  • Yang, Yiming & Peng, Jianxin & Cai, C.S. & Zhou, Yadong & Wang, Lei & Zhang, Jianren, 2022. "Time-dependent reliability assessment of aging structures considering stochastic resistance degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021006013
    DOI: 10.1016/j.ress.2021.108105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006013
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mauricio Sánchez-Silva & Georgia-Ann Klutke, 2016. "Reliability and Life-Cycle Analysis of Deteriorating Systems," Springer Series in Reliability Engineering, Springer, number 978-3-319-20946-3, February.
    2. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    3. Tatiyana V. Apanasovich & Marc G. Genton, 2010. "Cross-covariance functions for multivariate random fields based on latent dimensions," Biometrika, Biometrika Trust, vol. 97(1), pages 15-30.
    4. Guida, M. & Postiglione, F. & Pulcini, G., 2012. "A time-discrete extended gamma process for time-dependent degradation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 73-79.
    5. Hariri-Ardebili, Mohammad Amin, 2020. "Safety and reliability assessment of heterogeneous concrete components in nuclear structures," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Liu, Yan & Frangopol, Dan M., 2018. "Time-dependent reliability assessment of ship structures under progressive and shock deteriorations," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 116-128.
    7. Chatenet, Q. & Remy, E. & Gagnon, M. & Fouladirad, M. & Tahan, A.S., 2021. "Modeling cavitation erosion using non-homogeneous gamma process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    9. McKeand, Austin M. & Gorguluarslan, Recep M. & Choi, Seung-Kyum, 2021. "Stochastic analysis and validation under aleatory and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Zhang, Xuan-Yi & Lu, Zhao-Hui & Wu, Shi-Yu & Zhao, Yan-Gang, 2021. "An Efficient Method for Time-Variant Reliability including Finite Element Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Zhu, Xiaoyan & Hao, Yaqian, 2021. "Component rearrangement and system replacement for a system with stochastic degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    13. Calvert, Gareth & Neves, Luis & Andrews, John & Hamer, Matthew, 2020. "Multi-defect modelling of bridge deterioration using truncated inspection records," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    14. Choe, Do-Eun & Gardoni, Paolo & Rosowsky, David & Haukaas, Terje, 2008. "Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 383-393.
    15. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    16. Gong, Changqing & Frangopol, Dan M., 2020. "Time-variant hull girder reliability considering spatial dependence of corrosion growth, geometric and material properties," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    18. Wang, Cao & Zhang, Hao & Li, Quanwang, 2017. "Reliability assessment of aging structures subjected to gradual and shock deteriorations," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 78-86.
    19. Alkaff, Abdullah, 2021. "Discrete time dynamic reliability modeling for systems with multistate components," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Li, Yang & Xu, Jun, 2024. "Neural network-aided simulation of non-Gaussian stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Mendoza, Jorge & Bismut, Elizabeth & Straub, Daniel & Köhler, Jochen, 2022. "Optimal life-cycle mitigation of fatigue failure risk for structural systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Lin, Chun Pang & Ling, Man Ho & Cabrera, Javier & Yang, Fangfang & Yu, Denis Yau Wai & Tsui, Kwok Leung, 2021. "Prognostics for lithium-ion batteries using a two-phase gamma degradation process model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Yang, David Y. & Frangopol, Dan M., 2019. "Life-cycle management of deteriorating civil infrastructure considering resilience to lifetime hazards: A general approach based on renewal-reward processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 197-212.
    6. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    7. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. Liu, Biyu & Pang, Jie & Yang, Haidong & Zhao, Yilin, 2024. "Optimal condition-based maintenance policy for leased equipment considering hybrid preventive maintenance and periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Hazra, Indranil & Pandey, Mahesh D. & Manzana, Noldainerick, 2020. "Approximate Bayesian computation (ABC) method for estimating parameters of the gamma process using noisy data," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Zeina Al Masry & Sophie Mercier & Ghislain Verdier, 2017. "Approximate Simulation Techniques and Distribution of an Extended Gamma Process," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 213-235, March.
    13. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    15. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    16. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    17. Zhu, Xiaoyan & Hao, Yaqian, 2021. "Component rearrangement and system replacement for a system with stochastic degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Li, Zan & Wang, Fengming & Wang, Chengjie & Hu, Qingpei & Yu, Dan, 2021. "Reliability modeling and evaluation of lifetime delayed degradation process with nondestructive testing," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    19. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    20. Wang, Xiaofei & Wang, Bing Xing & Hong, Yili & Jiang, Pei Hua, 2021. "Degradation data analysis based on gamma process with random effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1200-1208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021006013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.