IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v249y2024ics0951832024003119.html
   My bibliography  Save this article

A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off

Author

Listed:
  • Li, Xiao Yan
  • Cheng, De Jun
  • Fang, Xi Feng
  • Zhang, Chun Yan
  • Wang, Yu Feng

Abstract

For aeroengine multitask prognosis, dataset's quantity and quality significantly affect the prediction performance. Due to the insufficiency and high redundancy of collected data, data augmentation techniques are widely utilized in industrial scenarios. However, traditional methods struggle to balance the degradation behavior diversity along with the usability of generated data. To tackle these challenges, this study proposes a novel data augmentation framework for aeroengine multitask prognosis. A novel First Predicting Time (FPT) identification method is proposed to identify the degradation starting point through Health Indictor (HI) volatility. Then, an optimal data augmentation strategy is designed based on Dual Discriminator Time-series Generative Adversarial Network (DDTGAN) and Negative Sample Elimination (NSE), which can enrich samples by extrapolating degradation behavior with multi-scale temporal features, and eliminating unqualified samples to obtain optimal generated samples through diversity-usability trade-off. Based on these, an adaptive Transformer-Multi-gate Mixture-Of-Experts (T-MMOE) multitask prognosis model with gradient normalization is constructed to predict Remaining Useful Life (RUL) and diagnose faults simultaneously with dynamic weights trade-off between two tasks. The proposed framework was compared with other models through the C-MAPSS dataset. Comparison results manifest that the proposed framework is not only able to generate realistic high-quality time-series data but also outperforms the other prognosis models.

Suggested Citation

  • Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003119
    DOI: 10.1016/j.ress.2024.110238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:249:y:2024:i:c:s0951832024003119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.