IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003855.html
   My bibliography  Save this article

Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method

Author

Listed:
  • Pan, Junlin
  • Sun, Bo
  • Wu, Zeyu
  • Yi, Zechen
  • Feng, Qiang
  • Ren, Yi
  • Wang, Zili

Abstract

Trustworthy remaining useful life (RUL) predictions are critical for the long-term safe and reliable operation of degradation systems. The existing deep learning-based methods for RUL prediction are attracting increasing attention but typically face three main challenges. One is the absence of complete run-to-failure data, implying a lack of lifetime labels. Second, it is difficult to directly measure the health indicators (HIs) for field degradation systems. Third, the prediction models output point estimates without uncertainty. To this end, this paper proposes a Bayesian deep learning and stochastic process fusion method for probabilistic RUL prediction without lifetime labels. First, a model-free Bayesian neural network (BNN) is constructed to integrate the quantification of epistemic and aleatoric uncertainties in deep learning. Based on the constructed BNN, it is possible to predict the probability features of HIs. Then, degeneracy modeling is conducted using a nonlinear Wiener process to derive the probability density function of the RUL. Furthermore, model evolution can be achieved through parameter updating during online operations. Finally, the effectiveness and superiority of the proposed prediction method are verified on CALCE battery degradation data.

Suggested Citation

  • Pan, Junlin & Sun, Bo & Wu, Zeyu & Yi, Zechen & Feng, Qiang & Ren, Yi & Wang, Zili, 2024. "Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003855
    DOI: 10.1016/j.ress.2024.110313
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.