IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004150.html
   My bibliography  Save this article

ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis

Author

Listed:
  • Yu, Tian
  • Li, Chaoshun
  • Huang, Jie
  • Xiao, Xiangqu
  • Zhang, Xiaoyuan
  • Li, Yuhong
  • Fu, Bitao

Abstract

Effective bearing fault diagnosis is crucial to ensure the safety and reliability of mechanical systems. Due to the complex and harsh working environment, mechanical data often comes from imbalanced datasets, which is a pressing problem in diagnosis applications. However, currently proposed data augmentation methods mainly based on generative adversarial networks, remain challenging in balancing the quality and diversity of the generation samples. To solve it, this paper proposes a new data enhancement method called the reparameterized residual denoising diffusion probability model (ReF-DDPM) and applies it to fault diagnosis. The proposed architecture includes a forward diffusion process and a reverse denoising process, where Gaussian noise and original samples are transformed by Markov chains. To improve the quality of generation samples, the noise prediction network is modified for better feature representation by enhancing intra-level and inter-level features. Furthermore, signal labels are added to the model as conditional information to direct the generation of relevant category samples during the sampling process. The study provides a new data augmentation method for bearing imbalanced data, and generation data can be further used for fault diagnosis tasks. Verification experiments demonstrate the effectiveness and good generalization of the method, and improve the accuracy of imbalance fault diagnosis.

Suggested Citation

  • Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004150
    DOI: 10.1016/j.ress.2024.110343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.