IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007755.html
   My bibliography  Save this article

Reliability modeling in a predictive maintenance context: A margin-based approach

Author

Listed:
  • Mandelli, Diego
  • Wang, Congjian
  • Agarwal, Vivek
  • Lin, Linyu
  • Manjunatha, Koushik A.

Abstract

Current system reliability methods (typically based on fault trees [FTs] or reliability block diagrams) can effectively propagate reliability data from the asset level to the system level in order to identify system-critical points. However, the asset reliability data employed are an approximated integral representation of past industry-wide operational experience, and thus neglect an asset's present health status (obtainable, for example, from online monitoring data and diagnostic assessments) and forecasted health projection (when available from prognostic models). Asset health should be informed solely by that specific asset's current and historical performance data and should not be an approximated integral representation of past industry-wide operational experience (as currently performed by system reliability models through Bayesian updating processes). Sensor data, diagnostic assessments, and prognostic assessments are in fact not considered in plant reliability models used to inform system engineers as to which assets are the most critical. In addition, propagation of quantitative health data from the asset level to the system level is made challenging by the diverse nature and structure of health data elements (e.g., vibration spectra, temperature readings, and expected failure time). Ideally, in a predictive maintenance context, system reliability models would support decision making by propagating available health information from the asset level to the system level to provide a quantitative snapshot of system health and identify the most critical assets. This paper directly addresses these two goals by proposing a different approach to reliability modeling—one that relies on asset diagnostic/prognostic assessments and monitoring data to measure asset health. Propagation of health data from the asset level to the system level is performed through FT models, not in terms of probability but rather in terms of margin, with margin being the “distance†between the asset's present status and an undesired event (e.g., failure or unacceptable performance). Per a cause-effect lens, while classical reliability models target the effect associated with asset performance, a margin-based approach focuses on the cause of the undesired asset performance (i.e., its health). Hence, thinking of reliability in terms of margins implies decision-making processes based on causal reasoning. We show how FT models can be solved using a margin-based reliability mindset, and how this process can effectively assist system engineers in identifying which assets are the most critical to system performance.

Suggested Citation

  • Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007755
    DOI: 10.1016/j.ress.2023.109861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007755
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Junqi & Liang, Zhenglin, 2023. "A dynamic predictive maintenance approach using probabilistic deep learning for a fleet of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    2. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Huang, Yufeng & Tao, Jun & Sun, Gang & Wu, Tengyun & Yu, Liling & Zhao, Xinbin, 2023. "A novel digital twin approach based on deep multimodal information fusion for aero-engine fault diagnosis," Energy, Elsevier, vol. 270(C).
    4. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    6. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    7. Martínez-Galán Fernández, Pablo & Guillén López, Antonio J. & Márquez, Adolfo Crespo & Gomez Fernández, Juan Fco. & Marcos, Jose Antonio, 2022. "Dynamic Risk Assessment for CBM-based adaptation of maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Niu, Gang & Jiang, Junjie, 2017. "Prognostic control-enhanced maintenance optimization for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 218-226.
    9. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Xing, Jinduo & Zeng, Zhiguo & Zio, Enrico, 2019. "A framework for dynamic risk assessment with condition monitoring data and inspection data," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Tahan, Mohammadreza & Tsoutsanis, Elias & Muhammad, Masdi & Abdul Karim, Z.A., 2017. "Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review," Applied Energy, Elsevier, vol. 198(C), pages 122-144.
    13. Roy Assaf & Phuc Do & Phil Scarf, 2022. "Towards Prognostics and Health Management of Multi-Component Systems with Stochastic Dependence," International Series in Operations Research & Management Science, in: Adiel Teixeira de Almeida & Love Ekenberg & Philip Scarf & Enrico Zio & Ming J. Zuo (ed.), Multicriteria and Optimization Models for Risk, Reliability, and Maintenance Decision Analysis, pages 305-320, Springer.
    14. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    15. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Zhao, Yixin & Cozzani, Valerio & Sun, Tianqi & Vatn, Jørn & Liu, Yiliu, 2023. "Condition-based maintenance for a multi-component system subject to heterogeneous failure dependences," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Xia, Jingyan & Huang, Ruyi & Chen, Zhuyun & He, Guolin & Li, Weihua, 2023. "A novel digital twin-driven approach based on physical-virtual data fusion for gearbox fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    19. Liu, Yongchao & Wang, Guanjun & Liu, Peng, 2024. "A condition-based maintenance policy with non-periodic inspection for k-out-of-n: G systems," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    21. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    22. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    23. Kim, Hyeonmin & Kim, Jung Taek & Heo, Gyunyoung, 2018. "Failure rate updates using condition-based prognostics in probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 225-233.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamariotis, Antonios & Tatsis, Konstantinos & Chatzi, Eleni & Goebel, Kai & Straub, Daniel, 2024. "A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    4. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Zaitseva, Elena & Levashenko, Vitaly & Rabcan, Jan, 2023. "A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    9. Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Pan, Junlin & Sun, Bo & Wu, Zeyu & Yi, Zechen & Feng, Qiang & Ren, Yi & Wang, Zili, 2024. "Probabilistic remaining useful life prediction without lifetime labels: A Bayesian deep learning and stochastic process fusion method," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    13. Mitici, Mihaela & de Pater, Ingeborg & Barros, Anne & Zeng, Zhiguo, 2023. "Dynamic predictive maintenance for multiple components using data-driven probabilistic RUL prognostics: The case of turbofan engines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    16. Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Zhou, Liang & Wang, Huawei, 2024. "An adaptive multi-scale feature fusion and adaptive mixture-of-experts multi-task model for industrial equipment health status assessment and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    18. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.