IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v232y2023ics0951832022006895.html
   My bibliography  Save this article

A variational transformer for predicting turbopump bearing condition under diverse degradation processes

Author

Listed:
  • Liu, Yulang
  • Chen, Jinglong
  • Wang, Tiantian
  • Li, Aimin
  • Pan, Tongyang

Abstract

Accurate condition prediction is necessary to ensure the reliability of the turbopump components. Meanwhile, with the ever-increasing complexity of the turbopump system, the corresponding degradation processes of the turbopump bearings are also increasingly diverse. Consequently, the investigation into the prediction of the turbopump bearing condition is of great significance. However, current research mostly reported on the remaining useful life prediction and neglected the predictive analysis based on the object's health condition. To address the problem, this paper proposed a combinational framework for the turbopump bearing condition monitoring and prediction. Firstly, a multi-branch residual network is designed to construct the health indicators (HIs), which are intended to indicate the health condition of the objects. Then, a Transformer model-based predictor is proposed to predict the constructed HIs accurately. By implanting the variational mechanism in the network, the predictor can achieve high accuracy under diverse degradation processes. To demonstrate the effectiveness of the proposed approach, a public whole-lifetime bearing dataset and a turbopump bearing dataset are utilized in the contrast experiments. Compared with some existing approaches, the proposed framework can obtain more reliable HIs and achieve higher prediction accuracy under diverse degradation processes.

Suggested Citation

  • Liu, Yulang & Chen, Jinglong & Wang, Tiantian & Li, Aimin & Pan, Tongyang, 2023. "A variational transformer for predicting turbopump bearing condition under diverse degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006895
    DOI: 10.1016/j.ress.2022.109074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Chen, Zewang & Shi, Na & Ji, Yufan & Niu, Mu & Wang, Youren, 2021. "Lithium-ion batteries remaining useful life prediction based on BLS-RVM," Energy, Elsevier, vol. 234(C).
    3. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Li, Fudong & Chen, Jinglong & Liu, Zijun & Lv, Haixin & Wang, Jun & Yuan, Junshe & Xiao, Wenrong, 2022. "A soft-target difference scaling network via relational knowledge distillation for fault detection of liquid rocket engine under multi-source trouble-free samples," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Pan, Tongyang & Chen, Jinglong & Ye, Zhisheng & Li, Aimin, 2022. "A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Chen, Tao & Li, Jiawen & Jin, Ping & Cai, Guobiao, 2013. "Reusable rocket engine preventive maintenance scheduling using genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 52-60.
    7. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Cheng, Yongbo & Qv, Junheng & Feng, Ke & Han, Te, 2024. "A Bayesian adversarial probsparse Transformer model for long-term remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Gao, Zhan & Jiang, Weixiong & Wu, Jun & Dai, Tianjiao & Zhu, Haiping, 2024. "Nonlinear slow-varying dynamics-assisted temporal graph transformer network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Chen, Dingliang & Qin, Yi & Qian, Quan & Wang, Yi & Liu, Fuqiang, 2023. "Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Zhu, Rong & Chen, Yuan & Peng, Weiwen & Ye, Zhi-Sheng, 2022. "Bayesian deep-learning for RUL prediction: An active learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    12. Zhou, Liang & Wang, Huawei & Xu, Shanshan, 2023. "Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Wang, Chenxi & Zhang, Yuxiang & Zhao, Zhibin & Chen, Xuefeng & Hu, Jiawei, 2024. "Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Jiang, Yuchen & Luo, Hao & Yin, Shen, 2023. "A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    16. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:232:y:2023:i:c:s0951832022006895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.