IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics095183202300056x.html
   My bibliography  Save this article

Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines

Author

Listed:
  • Yan, Jianhai
  • He, Zhen
  • He, Shuguang

Abstract

Prognostics and health management (PHM) uses data collected through sensors to monitor the states of sensor-equipped machines and provide maintenance decisions. PHM includes two essential tasks, i.e., health state (HS) assessment and remaining useful life (RUL) prediction. In existing works, the two tasks are often conducted separately without considering the relationships between HS and RUL. In this paper, we propose a multitask deep learning model for simultaneously assessing the HS and predicting the RUL of a machine; the model consists of four modules: a shared module, a multigate mixture-of-experts (MMOE) layer, an HS module, and an RUL module. In the model, a shared module including a bidirectional long short-term memory (BiLSTM) layer, an encoding layer, and a sampling layer is used to extract the shared information of the two tasks. Then, the MMOE layer is built to identify different information according to the two tasks. In the output layer, the HS module with an attention mechanism is used to evaluate the HS of the studied machine. Moreover, the RUL module predicts the RUL and constructs RUL prediction intervals to quantify uncertainty. Finally, the proposed model outperforms the state-of-the-art benchmark models and is validated on a public dataset of engines.

Suggested Citation

  • Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s095183202300056x
    DOI: 10.1016/j.ress.2023.109141
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300056X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109141?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Tae San Kim & So Young Sohn, 2021. "Multitask learning for health condition identification and remaining useful life prediction: deep convolutional neural network approach," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2169-2179, December.
    6. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    8. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    9. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Listou Ellefsen, André & Bjørlykhaug, Emil & Æsøy, Vilmar & Ushakov, Sergey & Zhang, Houxiang, 2019. "Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 240-251.
    11. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Lin, Danping & Jin, Baoping & Chang, Daofang, 2020. "A PSO approach for the integrated maintenance model," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Yu, Wennian & Kim, II Yong & Mechefske, Chris, 2020. "An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    14. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    15. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    16. Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhiyao & Chen, Xiaohui & Zio, Enrico & Li, Longxiao, 2023. "Multi-task learning boosted predictions of the remaining useful life of aero-engines under scenarios of working-condition shift," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Zhou, Liang & Wang, Huawei, 2024. "An adaptive multi-scale feature fusion and adaptive mixture-of-experts multi-task model for industrial equipment health status assessment and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    5. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Zhang, Yadong & Zhang, Chao & Wang, Shaoping & Dui, Hongyan & Chen, Rentong, 2024. "Health indicators for remaining useful life prediction of complex systems based on long short-term memory network and improved particle filter," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Zhu, Qixiang & Zhou, Zheng & Li, Yasong & Yan, Ruqiang, 2024. "Contrastive BiLSTM-enabled Health Representation Learning for Remaining Useful Life Prediction," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    16. Pan, Tongyang & Chen, Jinglong & Ye, Zhisheng & Li, Aimin, 2022. "A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Zhang, Yadong & Zhang, Chao & Wang, Shaoping & Dui, Hongyan & Chen, Rentong, 2024. "Health indicators for remaining useful life prediction of complex systems based on long short-term memory network and improved particle filter," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Fu, Song & Zhang, Yongjian & Lin, Lin & Zhao, Minghang & Zhong, Shi-sheng, 2021. "Deep residual LSTM with domain-invariance for remaining useful life prediction across domains," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s095183202300056x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.