IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005234.html
   My bibliography  Save this article

Remaining Useful Life prediction based on physics-informed data augmentation

Author

Listed:
  • Hervé de Beaulieu, Martin
  • Jha, Mayank Shekhar
  • Garnier, Hugues
  • Cerbah, Farid

Abstract

Current approaches for monitoring machine health (SOH) and effective prognostics depend on the extensive use of complete degradation data trajectories, implying the reliance on data generation techniques that involve functional degradation of the real system until the failure state is reached. These commonly adopted approaches that depend on labeled target data remain operationally and economically nonviable for most industries and safety critical systems. This paper presents novel approaches that alleviate the existing dependence of most prognostics procedures on Remaining Useful Life (RUL) labeled data for training. To this end, firstly, a hybrid data augmentation procedure is proposed that enables the integration of system knowledge available a priori as well as physics of failure, within the training data. Secondly, an unsupervised Health Index (HI) extraction approach is developed, followed by a long-term prediction of this same HI, that leads to an efficient prediction of RUL without labeled data. Finally, a reliability-based assessment is performed to validate the proposed approach. This comprehensive approach (i.e. integrating all the various stages involved in achieving a RUL prediction based on unlabeled data) is tested on a real industrial aircraft system demonstrating the effectiveness of the proposed approach in real industrial context.

Suggested Citation

  • Hervé de Beaulieu, Martin & Jha, Mayank Shekhar & Garnier, Hugues & Cerbah, Farid, 2024. "Remaining Useful Life prediction based on physics-informed data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005234
    DOI: 10.1016/j.ress.2024.110451
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.