Knowledge-based data augmentation of small samples for oil condition prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.108114
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
- He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
- Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
- Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2021. "An Integrated Data and Knowledge Model Addressing Aleatory and Epistemic Uncertainty for Oil Condition Monitoring," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
- Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
- Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
- Marwa Belhaj Salem & Mitra Fouladirad & Estelle Deloux, 2021. "Prognostic and Classification of Dynamic Degradation in a Mechanical System Using Variance Gamma Process," Mathematics, MDPI, vol. 9(3), pages 1-25, January.
- Jason S. Bergtold & Elizabeth A. Yeager & Allen M. Featherstone, 2018. "Inferences from logistic regression models in the presence of small samples, rare events, nonlinearity, and multicollinearity with observational data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 528-546, February.
- Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
- Yoo, Yeongmin & Jung, Ui-Jin & Han, Yong Ha & Lee, Jongsoo, 2021. "Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
- Chouaib Beldjoudi & Tewfik Kernane & Hamid El Maroufy, 2020. "Bayesian inference for a susceptible-exposed-infected-recovered epidemic model with data augmentation," Mathematical Population Studies, Taylor & Francis Journals, vol. 27(4), pages 232-258, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Jiang, Hongyan & Cheng, Feng & Wu, Cong & Fang, Dianjun & Zeng, Yuhai, 2024. "A multi-period-sequential-index combination method for short-term prediction of small sample data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Wang, Shaochen & Tian, Wende & Li, Chuankun & Cui, Zhe & Liu, Bin, 2023. "Mechanism-based deep learning for tray efficiency soft-sensing in distillation process," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
- Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
- Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
- Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Li, Jingkui & Liu, Xiaona & Lu, Yuze & Wang, Hanzheng, 2024. "Reliability analysis on energy storage system combining GO-FLOW methodology with GERT network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Mo, Huadong & Sansavini, Giovanni, 2019. "Impact of aging and performance degradation on the operational costs of distributed generation systems," Renewable Energy, Elsevier, vol. 143(C), pages 426-439.
- Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
- Sun, Quan & Peng, Fei & Yu, Xianghai & Li, Hongsheng, 2023. "Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Shengjin Tang & Xiaosong Guo & Zhijie Zhou, 2014. "Mis-specification analysis of linear Wiener process–based degradation models for the remaining useful life estimation," Journal of Risk and Reliability, , vol. 228(5), pages 478-487, October.
- Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
- Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
- Gómez Ramos, Almudena & Bardají Azcaráte, Isabel & Atance Muñiz, Ignacio, 2006. "The role of geographical labelling in inserting extensive cattle systems into beef marketing channels. Evidence from three Spanish case studies," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 78.
- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Fast variational Bayes methods for multinomial probit models," Papers 2202.12495, arXiv.org, revised Oct 2022.
- Robert Zeithammer & Peter Lenk, 2006. "Bayesian estimation of multivariate-normal models when dimensions are absent," Quantitative Marketing and Economics (QME), Springer, vol. 4(3), pages 241-265, September.
More about this item
Keywords
Data augmentation; Uncertainty; Wiener process; Particle filtering; Oil condition monitoring;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:217:y:2022:i:c:s0951832021006104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.