IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022004847.html
   My bibliography  Save this article

Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation

Author

Listed:
  • Yang, Ningning
  • Wang, Zhijian
  • Cai, Wenan
  • Li, Yanfeng

Abstract

Remaining useful life prediction based on deep learning for critical components demands sufficient and varied degradation samples. However, the field acquisition or laboratory preparation is generally cumbersome or the samples obtained are stereotyped. The paper proposes a data regeneration method based on multiple degradation processes to deal with the dilemma, which consists of three parts: state identification, regeneration rules from run to failure and state databases. In the first part, a global gain index and a local gain index are proposed to identify the different states of components. In the second part, an identical transformation method, a probability distribution of degradation states and data regeneration criteria are proposed to serve regeneration process of samples from run to failure. In the third part, an augmentation framework based on conditional generative adversarial networks is proposed to enrich the samples of the state database, which makes state samples more diverse. The practicability of regenerated samples obtained by the proposed method was verified by two experiments. In each experiment, initial samples, regenerated samples and hybrid samples were established respectively. Experiments with different training samples based on the same network were carried out to verify the effectiveness of the regenerated samples.

Suggested Citation

  • Yang, Ningning & Wang, Zhijian & Cai, Wenan & Li, Yanfeng, 2023. "Data Regeneration Based on Multiple Degradation Processes for Remaining Useful Life Estimation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004847
    DOI: 10.1016/j.ress.2022.108867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bian, Chong & Yang, Shunkun & Huang, Tingting & Xu, Qingyang & Liu, Jie & Zio, Enrico, 2019. "Degradation state mining and identification for railway point machines," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 432-443.
    2. Mingzhu Tang & Zixin Liang & Huawei Wu & Zimin Wang, 2021. "Fault Diagnosis Method for Wind Turbine Gearboxes Based on IWOA-RF," Energies, MDPI, vol. 14(19), pages 1-13, October.
    3. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. He, Xinxin & Wang, Zhijian & Li, Yanfeng & Khazhina, Svetlana & Du, Wenhua & Wang, Junyuan & Wang, Wenzhao, 2022. "Joint decision-making of parallel machine scheduling restricted in job-machine release time and preventive maintenance with remaining useful life constraints," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Cao, Yudong & Ding, Yifei & Jia, Minping & Tian, Rushuai, 2021. "A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
    9. Li, Tianfu & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Youdao Wang & Yifan Zhao, 2022. "Multi-Scale Remaining Useful Life Prediction Using Long Short-Term Memory," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    11. Wan, Shaoke & Li, Xiaohu & Zhang, Yanfei & Liu, Shijie & Hong, Jun & Wang, Dongfeng, 2022. "Bearing remaining useful life prediction with convolutional long short-term memory fusion networks," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. Liu, Shujie & Fan, Lexian, 2022. "An adaptive prediction approach for rolling bearing remaining useful life based on multistage model with three-source variability," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    14. Fan, Linchuan & Chai, Yi & Chen, Xiaolong, 2022. "Trend attention fully convolutional network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Kezhen Liu & Shizhe Wu & Zhao Luo & Zeweiyi Gongze & Xianlong Ma & Zhanguo Cao & Hejian Li, 2021. "An Intelligent Fault Diagnosis Method for Transformer Based on IPSO-gcForest," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-12, February.
    16. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2020. "A novel method for maintenance record clustering and its application to a case study of maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Hongyan & Cheng, Feng & Wu, Cong & Fang, Dianjun & Zeng, Yuhai, 2024. "A multi-period-sequential-index combination method for short-term prediction of small sample data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Li, Xiao Yan & Cheng, De Jun & Fang, Xi Feng & Zhang, Chun Yan & Wang, Yu Feng, 2024. "A novel data augmentation strategy for aeroengine multitask prognosis based on degradation behavior extrapolation and diversity-usability trade-off," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    3. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Li, Yajing & Wang, Zhijian & Li, Feng & Li, Yanfeng & Zhang, Xiaohong & Shi, Hui & Dong, Lei & Ren, Weibo, 2024. "An ensembled remaining useful life prediction method with data fusion and stage division," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Cao, Lixiao & Zhang, Hongyu & Meng, Zong & Wang, Xueping, 2023. "A parallel GRU with dual-stage attention mechanism model integrating uncertainty quantification for probabilistic RUL prediction of wind turbine bearings," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Ni, Qing & Ji, J.C. & Feng, Ke & Zhang, Yongchao & Lin, Dongdong & Zheng, Jinde, 2024. "Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Liu, Junqiang & Yu, Zhuoqian & Zuo, Hongfu & Fu, Rongchunxue & Feng, Xiaonan, 2022. "Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Leoni, Leonardo & De Carlo, Filippo & Abaei, Mohammad Mahdi & BahooToroody, Ahmad & Tucci, Mario, 2023. "Failure diagnosis of a compressor subjected to surge events: A data-driven framework," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. de Pater, Ingeborg & Reijns, Arthur & Mitici, Mihaela, 2022. "Alarm-based predictive maintenance scheduling for aircraft engines with imperfect Remaining Useful Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    14. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    18. Zhou, Liang & Wang, Huawei, 2024. "An adaptive multi-scale feature fusion and adaptive mixture-of-experts multi-task model for industrial equipment health status assessment and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Ding, Ning & Li, Hulin & Xin, Qi & Wu, Bo & Jiang, Dan, 2023. "Multi-source domain generalization for degradation monitoring of journal bearings under unseen conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Yang, Shilong & Tang, Baoping & Wang, Weiying & Yang, Qichao & Hu, Cheng, 2024. "Physics-informed multi-state temporal frequency network for RUL prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022004847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.