IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024004666.html
   My bibliography  Save this article

Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines

Author

Listed:
  • Wang, Wei
  • Song, Honghao
  • Si, Shubin
  • Lu, Wenhao
  • Cai, Zhiqiang

Abstract

Predicting the remaining useful life (RUL) of aero-engines is essential for their prognostics and health management (PHM). Deep learning technologies are effective in this area, but their success depends critically on acquiring sufficient engine monitoring data from operation to failure, a process that is expensive and challenging in practice. Insufficient data limit the training of deep learning methods, thereby affecting their predictive performance. To address this issue, this study proposes a novel method named DiffRUL for augmenting multivariate engine monitoring data and generating high-quality samples mimicking degradation trends in real data. Initially, a specialized degradation trend encoder is designed to extract degradation trend representations from monitoring data, which serve as generative conditions. Subsequently, the diffusion model is adapted to the scenario of generating multivariate monitoring data, reconstructing and synthesizing data from Gaussian noise through a reverse process. Additionally, a denoising network is developed to incorporate generative conditions and capture spatio-temporal correlations in the data, accurately estimating noise levels during the reverse process. Experimental results on C-MAPSS and N-CMAPSS datasets show that DiffRUL successfully generates high-fidelity multivariate monitoring data. Furthermore, these generated data effectively support the RUL prediction task and significantly enhance the predictive ability of the underlying deep learning models.

Suggested Citation

  • Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004666
    DOI: 10.1016/j.ress.2024.110394
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024004666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.