IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i9p2816-2829.html
   My bibliography  Save this article

EM algorithms for multivariate Gaussian mixture models with truncated and censored data

Author

Listed:
  • Lee, Gyemin
  • Scott, Clayton

Abstract

We present expectation–maximization (EM) algorithms for fitting multivariate Gaussian mixture models to data that are truncated, censored or truncated and censored. These two types of incomplete measurements are naturally handled together through their relation to the multivariate truncated Gaussian distribution. We illustrate our algorithms on synthetic and flow cytometry data.

Suggested Citation

  • Lee, Gyemin & Scott, Clayton, 2012. "EM algorithms for multivariate Gaussian mixture models with truncated and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2816-2829.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2816-2829
    DOI: 10.1016/j.csda.2012.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312001156
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard & Langrognet, Florent, 2006. "Model-based cluster and discriminant analysis with the MIXMOD software," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 587-600, November.
    2. Gelman A., 2004. "Parameterization and Bayesian Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 537-545, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bouveyron, Charles & Brunet-Saumard, Camille, 2014. "Model-based clustering of high-dimensional data: A review," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 52-78.
    2. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    3. Masahiro Kuroda & Zhi Geng & Michio Sakakihara, 2015. "Improving the vector $$\varepsilon $$ ε acceleration for the EM algorithm using a re-starting procedure," Computational Statistics, Springer, vol. 30(4), pages 1051-1077, December.
    4. Diego Tomassi & Liliana Forzani & Efstathia Bura & Ruth Pfeiffer, 2017. "Sufficient dimension reduction for censored predictors," Biometrics, The International Biometric Society, vol. 73(1), pages 220-231, March.
    5. Laurent Bordes & Didier Chauveau, 2016. "Stochastic EM algorithms for parametric and semiparametric mixture models for right-censored lifetime data," Computational Statistics, Springer, vol. 31(4), pages 1513-1538, December.
    6. Marianna Karava & Felix Bracharz & Johannes Kabisch, 2019. "Quantification and isolation of Bacillus subtilis spores using cell sorting and automated gating," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-15, July.
    7. Semhar Michael & Tatjana Miljkovic & Volodymyr Melnykov, 2020. "Mixture modeling of data with multiple partial right-censoring levels," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 355-378, June.
    8. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2022. "Knowledge-based data augmentation of small samples for oil condition prediction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Jaspers, Stijn & Aerts, Marc & Verbeke, Geert & Beloeil, Pierre-Alexandre, 2014. "A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 30-42.
    10. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    11. Gloria Gonzalez-Rivera & Yun Luo, 2020. "A Truncated Mixture Transition Model for Interval-valued Time Series," Working Papers 202005, University of California at Riverside, Department of Economics.
    12. Forzani, Liliana & García Arancibia, Rodrigo & Llop, Pamela & Tomassi, Diego, 2018. "Supervised dimension reduction for ordinal predictors," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 136-155.
    13. Bram Thijssen & Lodewyk F A Wessels, 2020. "Approximating multivariate posterior distribution functions from Monte Carlo samples for sequential Bayesian inference," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-25, March.
    14. Michele Bavaro & Federico Tullio, 2023. "Intergenerational mobility measurement with latent transition matrices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 25-45, March.
    15. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine & Celso R. B. Cabral, 2017. "Linear censored regression models with scale mixtures of normal distributions," Statistical Papers, Springer, vol. 58(1), pages 247-278, March.
    16. Zhechun He, 2017. "Housing and Financial Asset Allocations of Heterogeneous Homeowners," Discussion Papers 17/07, Department of Economics, University of York.
    17. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Multivariate mixtures of Erlangs for density estimation under censoring," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 429-455, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 258-293, June.
    2. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    3. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    4. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    5. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    6. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    7. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    8. Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
    9. Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
    10. Qian, Song S., 2012. "On model coefficient estimation using Markov chain Monte Carlo simulations: A potential problem and the solution," Ecological Modelling, Elsevier, vol. 247(C), pages 302-306.
    11. Jean-Patrick Baudry & Margarida Cardoso & Gilles Celeux & Maria Amorim & Ana Ferreira, 2015. "Enhancing the selection of a model-based clustering with external categorical variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 177-196, June.
    12. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2009. "Variable selection in model-based clustering: A general variable role modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(11), pages 3872-3882, September.
    13. Breitwieser, Anja & Wick, Katharina, 2016. "What We Miss By Missing Data: Aid Effectiveness Revisited," World Development, Elsevier, vol. 78(C), pages 554-571.
    14. Galimberti, Giuliano & Soffritti, Gabriele, 2014. "A multivariate linear regression analysis using finite mixtures of t distributions," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 138-150.
    15. Mingyuan Chen & Dakshina De Silva & Aurelie Slechten, 2021. "Director appointments, boardroom networks, and firm environmental performance," Working Papers 332157256, Lancaster University Management School, Economics Department.
    16. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    17. O. Olawale Awe & A. Adedayo Adepoju, 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 239-258, June.
    18. Anja Breitwieser & Katharina Wick, 2013. "What We Miss By Missing Data: Aid Effectiveness Revisited," Vienna Economics Papers vie1302, University of Vienna, Department of Economics.
    19. Hasnat, Md. Abul & Velcin, Julien & Bonnevay, Stephane & Jacques, Julien, 2017. "Evolutionary clustering for categorical data using parametric links among multinomial mixture models," Econometrics and Statistics, Elsevier, vol. 3(C), pages 141-159.
    20. Nazif Çalış & Hamza Erol, 2012. "A new per-field classification method using mixture discriminant analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(10), pages 2129-2140, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:9:p:2816-2829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.