IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v206y2021ics0951832020308103.html
   My bibliography  Save this article

Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)

Author

Listed:
  • Yoo, Yeongmin
  • Jung, Ui-Jin
  • Han, Yong Ha
  • Lee, Jongsoo

Abstract

Owing to uncertainty factors present in the system, computer-aided engineering (CAE) models suffer from limitations in terms of accuracy of test model representation. This paper proposes a new predictive model, termed designable generative adversarial network (DGAN), which applies the Inverse generator neural network to GAN, one of the methods employed for data augmentation. Statistical model-based validation and calibration technology, employed for improving the accuracy of a predictive model, is used to compare the prediction accuracy of the DGAN. Statistical model-based technology can construct a predictive model through calibration between actual test data and CAE data by considering uncertainty factors. However, the achievable improvement in prediction accuracy is limited, depending on the degree of approximation of the CAE model. DGAN can construct a predictive model through machine learning using only actual test data, improve the prediction accuracy of an actual test model, and present design variables that affect the response data, which is the output of the predictive model. The performance of the proposed prediction model was evaluated and verified, as a case study, through a numerical example and system level vehicle crash test model including parameter uncertainties.

Suggested Citation

  • Yoo, Yeongmin & Jung, Ui-Jin & Han, Yong Ha & Lee, Jongsoo, 2021. "Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:reensy:v:206:y:2021:i:c:s0951832020308103
    DOI: 10.1016/j.ress.2020.107316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020308103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
    2. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    3. Li, Chenzhao & Mahadevan, Sankaran, 2016. "Role of calibration, validation, and relevance in multi-level uncertainty integration," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 32-43.
    4. Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.
    5. Sankararaman, Shankar & Mahadevan, Sankaran, 2015. "Integration of model verification, validation, and calibration for uncertainty quantification in engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 194-209.
    6. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Campbell, Katherine, 2006. "Statistical calibration of computer simulations," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1358-1363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shangguan, Anqi & Xie, Guo & Fei, Rong & Mu, Lingxia & Hei, Xinhong, 2023. "Train wheel degradation generation and prediction based on the time series generation adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2022. "Knowledge-based data augmentation of small samples for oil condition prediction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Zhang, Chen & Hu, Di & Yang, Tao, 2024. "Research of artificial intelligence operations for wind turbines considering anomaly detection, root cause analysis, and incremental training," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Sun, Quan & Peng, Fei & Yu, Xianghai & Li, Hongsheng, 2023. "Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhao, Yunjie & Cheng, Xi & Zhang, Taihong & Wang, Lei & Shao, Wei & Wiart, Joe, 2023. "A global–local attention network for uncertainty analysis of ground penetrating radar modeling," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Huang, Cheng-Hao & Huang, Ding-Hsiang & Lin, Yi-Kuei, 2023. "Network reliability prediction for random capacitated-flow networks via an artificial neural network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Yongsu & Jo, Hwisang & Choo, Jeonghwan & Lee, Ikjin, 2022. "Statistical model calibration and design optimization under aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Jung, Yongsu & Lee, Ikjin, 2021. "Optimal design of experiments for optimization-based model calibration using Fisher information matrix," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    4. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    5. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Perrin, G., 2020. "Adaptive calibration of a computer code with time-series output," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Kim, Wongon & Yoon, Heonjun & Lee, Guesuk & Kim, Taejin & Youn, Byeng D., 2020. "A new calibration metric that considers statistical correlation: Marginal Probability and Correlation Residuals," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    9. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    10. Merlin Keller & Guillaume Damblin & Alberto Pasanisi & Mathieu Schumann & Pierre Barbillon & Fabrizio Ruggeri, 2022. "Validation of a Computer Code for the Energy Consumption of a Building, with Application to Optimal Electric Bill Pricing," Post-Print hal-04071903, HAL.
    11. Drignei, Dorin, 2011. "A general statistical model for computer experiments with time series output," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 460-467.
    12. Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Yuan, Jun & Ng, Szu Hui, 2013. "A sequential approach for stochastic computer model calibration and prediction," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 273-286.
    14. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    15. Agee, Philip & Nikdel, Leila & McCoy, Andrew & Kianpour rad, Simin & Gao, Xinghua, 2024. "Manufactured housing: Energy burden outcomes from measured and simulated building performance data," Energy Policy, Elsevier, vol. 186(C).
    16. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    17. Bellaera, R. & Bonifetto, R. & Di Maio, F. & Pedroni, N. & Savoldi, L. & Zanino, R. & Zio, E., 2020. "Integrated deterministic and probabilistic safety assessment of a superconducting magnet cryogenic cooling circuit for nuclear fusion applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    18. Jose Luiz F. Barbosa & Antonio P. Coimbra & Dan Simon & Wesley P. Calixto, 2022. "Optimization Process Applied in the Thermal and Luminous Design of High Power LED Luminaires," Energies, MDPI, vol. 15(20), pages 1-28, October.
    19. Carla L. Simões & Ricardo Simoes & Ana Sofia Gonçalves & Leonel J. R. Nunes, 2023. "Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    20. Retno Agustarini & Yetti Heryati & Yelin Adalina & Wahyu Catur Adinugroho & Dhany Yuniati & Rizki Ary Fambayun & Gerhard Eli Sabastian & Asep Hidayat & Hesti Lestari Tata & William Ingram & Aulia Perd, 2022. "The Development of Indigofera spp. as a Source of Natural Dyes to Increase Community Incomes on Timor Island, Indonesia," Economies, MDPI, vol. 10(2), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:206:y:2021:i:c:s0951832020308103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.