IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v211y2021ics0951832021000661.html
   My bibliography  Save this article

Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE

Author

Listed:
  • Starling, James K.
  • Mastrangelo, Christina
  • Choe, Youngjun

Abstract

In reliability analysis, lifetime data may be heavily censored and this censoring can have an adverse effect on parameter estimates. Using maximum-likelihood estimation (MLE) to estimate the parameters of reliability functions is common in practice especially with (right) censored observations. However, estimating parameters using MLE introduces an inherent bias which tends to increase as the number of observations decreases and/or the censoring proportion increases. Reliability demonstration tests (RDT) typically use a Type I or Type II censoring mechanism; however, in many real-life applications a generalized Type I censoring mechanism, where each observation has its own censoring times, is often more applicable. These examples occur in structural risk analyses, obsolescence predictions, and medical studies where items under study may have different introduction dates but have lifetimes from the same probability distribution. This research improves Weibull distribution parameter estimates by combining a modified MLE and an oversampling method. Empirical results are presented with recommendations for preferred oversampling sizes, dependent upon the sample size and censoring proportion, using the Kullback–Leibler divergence to measure the difference between the known distribution and estimated distributions. A case study is provided to highlight the method’s use in an obsolescence prediction application.

Suggested Citation

  • Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021000661
    DOI: 10.1016/j.ress.2021.107505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhenlin Yang & Dennis K. J. Lin, 2007. "Improved maximum‐likelihood estimation for the common shape parameter of several Weibull populations," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(5), pages 373-383, September.
    2. Pérot, Nadia & Bousquet, Nicolas, 2017. "Functional Weibull-based models of steel fracture toughness for structural risk analysis: estimation and selection," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 355-367.
    3. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    4. Janurová, Kateřina & Briš, Radim, 2014. "A nonparametric approach to medical survival data: Uncertainty in the context of risk in mortality analysis," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 145-152.
    5. Li, Xiaoyang & Chen, Wenbin & Sun, Fuqiang & Liao, Haitao & Kang, Rui & Li, Renqing, 2018. "Bayesian accelerated acceptance sampling plans for a lognormal lifetime distribution under Type-I censoring," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 78-86.
    6. Jeon, Jeasu & Sohn, So Young, 2015. "Product failure pattern analysis from warranty data using association rule and Weibull regression analysis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 176-183.
    7. Zhang, L.F. & Xie, M. & Tang, L.C., 2006. "Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 930-939.
    8. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    9. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    10. Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wei & Shao, Changzheng & Hu, Bo & Li, Weizhan & Sun, Yue & Xie, Kaigui & Zio, Enrico & Li, Wenyuan, 2023. "A restoration-clustering-decomposition learning framework for aging-related failure rate estimation of distribution transformers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2022. "Knowledge-based data augmentation of small samples for oil condition prediction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Zhou, Hang & Lopes Genez, Thiago Augusto & Brintrup, Alexandra & Parlikad, Ajith Kumar, 2022. "A hybrid-learning decomposition algorithm for competing risk identification within fleets of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Sun, Quan & Peng, Fei & Yu, Xianghai & Li, Hongsheng, 2023. "Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Lee, Amy H.I. & Wu, Chien-Wei & Wang, To-Cheng & Kuo, Ming-Han, 2024. "Construction of acceptance sampling schemes for exponential lifetime products with progressive type II right censoring," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    2. Renyan Jiang, 2022. "A novel parameter estimation method for the Weibull distribution on heavily censored data," Journal of Risk and Reliability, , vol. 236(2), pages 307-316, April.
    3. Zheng, Huiling & Yang, Jun & Xu, Houbao & Zhao, Yu, 2023. "Reliability acceptance sampling plan for degraded products subject to Wiener process with unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Coolen-Maturi, Tahani, 2014. "Nonparametric predictive pairwise comparison with competing risks," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 146-153.
    5. Lin, Kunsong & Chen, Yunxia, 2021. "Analysis of two-dimensional warranty data considering global and local dependence of heterogeneous marginals," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Lemonte, Artur J. & Cordeiro, Gauss M., 2009. "Birnbaum-Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4441-4452, October.
    7. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    8. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    9. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    10. Çakır, Erkan & Fışkın, Remzi & Sevgili, Coşkan, 2021. "Investigation of tugboat accidents severity: An application of association rule mining algorithms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Liang Wang & Sanku Dey & Yogesh Mani Tripathi, 2022. "Classical and Bayesian Inference of the Inverse Nakagami Distribution Based on Progressive Type-II Censored Samples," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    12. Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    13. Mason, Paolo, 2017. "A Bayesian analysis of component life expectancy and its implications on the inspection schedule," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 87-94.
    14. Guo, Xueyi & Zhang, Jingxi & Tian, Qinghua, 2021. "Modeling the potential impact of future lithium recycling on lithium demand in China: A dynamic SFA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Pushkal Kumar & Manas Ranjan Tripathy & Somesh Kumar, 2023. "Bayesian estimation and classification for two logistic populations with a common location," Computational Statistics, Springer, vol. 38(2), pages 711-748, June.
    16. Zhu, Tiefeng, 2020. "Reliability estimation for two-parameter Weibull distribution under block censoring," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    17. Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Saralees Nadarajah & Xiang Jia, 2017. "Estimation of $$P(Y > X)$$ P ( Y > X ) for the Weibull distribution," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1762-1774, November.
    19. Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Hua Xin & Zhifang Liu & Yuhlong Lio & Tzong-Ru Tsai, 2020. "Accelerated Life Test Method for the Doubly Truncated Burr Type XII Distribution," Mathematics, MDPI, vol. 8(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021000661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.