Software reliability prediction using a deep learning model based on the RNN encoder–decoder
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2017.10.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Q.P. & Xie, M. & Ng, S.H. & Levitin, G., 2007. "Robust recurrent neural network modeling for software fault detection and correction prediction," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 332-340.
- Okamura, Hiroyuki & Dohi, Tadashi & Osaki, Shunji, 2013. "Software reliability growth models with normal failure time distributions," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 135-141.
- Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
- Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
- Li, Xingyu & Krivtsov, Vasiliy & Arora, Karunesh, 2022. "Attention-based deep survival model for time series data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Kyawt Kyawt San & Hironori Washizaki & Yoshiaki Fukazawa & Kiyoshi Honda & Masahiro Taga & Akira Matsuzaki, 2021. "Deep Cross-Project Software Reliability Growth Model Using Project Similarity-Based Clustering," Mathematics, MDPI, vol. 9(22), pages 1-22, November.
- Dehghani, Nariman L. & Zamanian, Soroush & Shafieezadeh, Abdollah, 2021. "Adaptive network reliability analysis: Methodology and applications to power grid," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Ding, Zhiguo & Xing, Liudong, 2020. "Improved software defect prediction using Pruned Histogram-based isolation forest," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
- Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
- Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
- GarcÃa Nieto, P.J. & GarcÃa-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
- Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
- Hao, Peng & Yang, Hao & Wang, Yutian & Liu, Xuanxiu & Wang, Bo & Li, Gang, 2021. "Efficient reliability-based design optimization of composite structures via isogeometric analysis," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
- Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
- Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
- Awad, Mahmoud, 2016. "Economic allocation of reliability growth testing using Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 273-280.
- Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
- Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
- Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
- Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
- Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
- Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
- Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
More about this item
Keywords
Deep learning model based on RNN encoder–decoder; Model comparison; Neural network models; Parameter models; Software reliability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:73-82. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.