IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v152y2016icp273-280.html
   My bibliography  Save this article

Economic allocation of reliability growth testing using Weibull distributions

Author

Listed:
  • Awad, Mahmoud

Abstract

Reliability growth testing (RGT) has been widely used for assessing the reliability of complex systems in many industries such as automotive, aerospace, and oil and gas industry. The traditional common and practiced approach of RGT is to assess the initial reliability of the system by building and testing few prototypes for a period of time that extends from few months to years. Then, based on the initial reliability, initial testing time, and reliability target; the total testing time is determined using power law based models such as Duane and AMSAA/Crow models. In this paper, a new method is proposed to allocate RGT time for both subsystems and system level in order to minimize system failure intensity under limited cost and time resources. Unlike existing methods, failure intensity is assumed to be dynamic and modeled using Weibull distribution. Modeling using Weibull is more realistic and increases the applicability of the proposed method in real life applications. The proposed method is motivated by real life examples and its effectiveness is demonstrated by real-life examples.

Suggested Citation

  • Awad, Mahmoud, 2016. "Economic allocation of reliability growth testing using Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 273-280.
  • Handle: RePEc:eee:reensy:v:152:y:2016:i:c:p:273-280
    DOI: 10.1016/j.ress.2016.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van Dyck, Jozef & Verdonck, Tim, 2014. "Precision of power-law NHPP estimates for multiple systems with known failure rate scaling," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 143-152.
    2. Okamura, Hiroyuki & Dohi, Tadashi & Osaki, Shunji, 2013. "Software reliability growth models with normal failure time distributions," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 135-141.
    3. Yadav, Om Prakash & Singh, Nanua & Goel, Parveen S., 2006. "Reliability demonstration test planning: A three dimensional consideration," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 882-893.
    4. Peng, Weiwen & Huang, Hong-Zhong & Li, Yanfeng & Zuo, Ming J. & Xie, Min, 2013. "Life cycle reliability assessment of new products—A Bayesian model updating approach," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 109-119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heydari, Mohammadhossein & Sullivan, Kelly M., 2019. "Robust allocation of testing resources in reliability growth," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Sonal, S.D. & Ammanagi, S & Kanjilal, O & Manohar, C.S., 2018. "Experimental estimation of time variant system reliability of vibrating structures based on subset simulation with Markov chain splitting," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 55-68.
    3. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    4. Wang, Yukun & Liu, Yiliu & Li, Xiaopeng & Chen, Junyan, 2019. "Multi-phase reliability growth test planning for repairable products sold with a two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 315-326.
    5. Yihai He & Changchao Gu & Zhaoxiang Chen & Xiao Han, 2017. "Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5841-5862, October.
    6. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    2. Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
    3. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    4. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    5. Tatbita Titin Suhariyanto & Dzuraidah Abd Wahab & Mohd Nizam Ab Rahman, 2018. "Product Design Evaluation Using Life Cycle Assessment and Design for Assembly: A Case Study of a Water Leakage Alarm," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    6. Yixiong Feng & Zhaoxi Hong & Jin Cheng & Likai Jia & Jianrong Tan, 2017. "Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    7. Yadav, Om Prakash & Zhuang, Xing, 2014. "A practical reliability allocation method considering modified criticality factors," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 57-65.
    8. Santosh B. Rane & Yahya A.M. Narvel & Niloy Khatua, 2017. "Development of mechanism for mounting secondary isolating contacts (SICs) in air circuit breakers (ACBs) with high operational reliability," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1816-1831, November.
    9. Santosh B. Rane & Yahya A. M. Narvel, 2016. "Reliability assessment and improvement of air circuit breaker (ACB) mechanism by identifying and eliminating the root causes," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(1), pages 305-321, December.
    10. Luo, Wei & Zhang, Chun-hua & Chen, Xun & Tan, Yuan-yuan, 2015. "Accelerated reliability demonstration under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 75-84.
    11. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    12. Ahmed, Hussam & Chateauneuf, Alaa, 2014. "Optimal number of tests to achieve and validate product reliability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 242-250.
    13. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    14. Zhong, Jilong & Sanhedrai, Hillel & Zhang, FengMing & Yang, Yi & Guo, Shu & Yang, Shunkun & Li, Daqing, 2020. "Network endurance against cascading overload failure," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Yizhen, Peng & Yu, Wang & Jingsong, Xie & Yanyang, Zi, 2020. "Adaptive stochastic-filter-based failure prediction model for complex repairable systems under uncertainty conditions," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Slimacek, Vaclav & Lindqvist, Bo Henry, 2016. "Nonhomogeneous Poisson process with nonparametric frailty," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 14-23.
    17. Yaghoobi, Tahere, 2020. "Parameter optimization of software reliability models using improved differential evolution algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 46-62.
    18. Kim, Kyungmee O. & Yang, Yoonjung & Zuo, Ming J., 2013. "A new reliability allocation weight for reducing the occurrence of severe failure effects," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 81-88.
    19. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    20. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:152:y:2016:i:c:p:273-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.