IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v126y2014icp37-43.html
   My bibliography  Save this article

Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction

Author

Listed:
  • Peng, R.
  • Li, Y.F.
  • Zhang, W.J.
  • Hu, Q.P.

Abstract

This paper studies the fault detection process (FDP) and fault correction process (FCP) with the incorporation of testing effort function and imperfect debugging. In order to ensure high reliability, it is essential for software to undergo a testing phase, during which faults can be detected and corrected by debuggers. The testing resource allocation during this phase, which is usually depicted by the testing effort function, considerably influences not only the fault detection rate but also the time to correct a detected fault. In addition, testing is usually far from perfect such that new faults may be introduced. In this paper, we first show how to incorporate testing effort function and fault introduction into FDP and then develop FCP as delayed FDP with a correction effort. Various specific paired FDP and FCP models are obtained based on different assumptions of fault introduction and correction effort. An illustrative example is presented. The optimal release policy under different criteria is also discussed.

Suggested Citation

  • Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
  • Handle: RePEc:eee:reensy:v:126:y:2014:i:c:p:37-43
    DOI: 10.1016/j.ress.2014.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014000052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boland, Philip J. & Ní Chuív, Nóra, 2007. "Optimal times for software release when repair is imperfect," Statistics & Probability Letters, Elsevier, vol. 77(12), pages 1176-1184, July.
    2. Shini Inoue & Shigeru Yamada, 2007. "A Framework For Discrete Software Reliability Modeling With Program Size And Its Applications," World Scientific Book Chapters, in: Tadashi Dohi & Shunji Osaki & Katsushige Sawaki (ed.), Recent Advances In Stochastic Operations Research, chapter 5, pages 63-78, World Scientific Publishing Co. Pte. Ltd..
    3. Pievatolo, Antonio & Ruggeri, Fabrizio & Soyer, Refik, 2012. "A Bayesian hidden Markov model for imperfect debugging," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 11-21.
    4. Okamura, Hiroyuki & Dohi, Tadashi & Osaki, Shunji, 2013. "Software reliability growth models with normal failure time distributions," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 135-141.
    5. Kang, Hyun Gook & Lim, Ho Gon & Lee, Ho Jung & Kim, Man Cheol & Jang, Seung Cheol, 2009. "Input-profile-based software failure probability quantification for safety signal generation systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1542-1546.
    6. P. K. Kapur & H. Pham & A. Gupta & P. C. Jha, 2011. "Software Reliability Growth Models," Springer Series in Reliability Engineering, in: Software Reliability Assessment with OR Applications, chapter 0, pages 49-95, Springer.
    7. Hu, Q.P. & Xie, M. & Ng, S.H. & Levitin, G., 2007. "Robust recurrent neural network modeling for software fault detection and correction prediction," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 332-340.
    8. Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
    9. Chiu, Kuei-Chen & Huang, Yeu-Shiang & Lee, Tzai-Zang, 2008. "A study of software reliability growth from the perspective of learning effects," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1410-1421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    2. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    3. Nguyen, Khanh T.P. & Fouladirad, Mitra & Grall, Antoine, 2018. "Model selection for degradation modeling and prognosis with health monitoring data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 105-116.
    4. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    5. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    6. Vishal Pradhan & Ajay Kumar & Joydip Dhar, 2022. "Modelling software reliability growth through generalized inflection S-shaped fault reduction factor and optimal release time," Journal of Risk and Reliability, , vol. 236(1), pages 18-36, February.
    7. Chetna Choudhary & P. K. Kapur & Sunil K. Khatri & R. Muthukumar & Avinash K. Shrivastava, 2020. "Effort based release time of software for detection and correction processes using MAUT," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 367-378, July.
    8. Mohammad Ubaidullah Bokhari & Md. Ashraf Siddiqui & Afaq Ahmad, 2021. "Integration of Testing Effort Function into Delayed S-Shaped Software Reliability Growth Model with Imperfect Debugging — a Proposed Bokhari Model," SN Operations Research Forum, Springer, vol. 2(4), pages 1-23, December.
    9. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    10. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
    2. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    3. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    4. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    5. Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
    6. Pievatolo, Antonio & Ruggeri, Fabrizio & Soyer, Refik, 2012. "A Bayesian hidden Markov model for imperfect debugging," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 11-21.
    7. Yang, Bo & Li, Xiang & Xie, Min & Tan, Feng, 2010. "A generic data-driven software reliability model with model mining technique," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 671-678.
    8. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.
    9. Wang, Jinyong & Zhang, Ce, 2018. "Software reliability prediction using a deep learning model based on the RNN encoder–decoder," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 73-82.
    10. Chih-Chiang Fang & Chun-Wu Yeh, 2016. "Effective confidence interval estimation of fault-detection process of software reliability growth models," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(12), pages 2878-2892, September.
    11. Anu Aggarwal & Sudeep Kumar & Ritu Gupta, 2024. "Testing coverage based NHPP software reliability growth modeling with testing effort and change-point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(11), pages 5157-5166, November.
    12. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    13. Tabassum Naz Sindhu & Sadia Anwar & Marwa K. H. Hassan & Showkat Ahmad Lone & Tahani A. Abushal & Anum Shafiq, 2023. "An Analysis of the New Reliability Model Based on Bathtub-Shaped Failure Rate Distribution with Application to Failure Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    14. Hao, Peng & Yang, Hao & Wang, Yutian & Liu, Xuanxiu & Wang, Bo & Li, Gang, 2021. "Efficient reliability-based design optimization of composite structures via isogeometric analysis," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    15. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    16. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    17. Awad, Mahmoud, 2016. "Economic allocation of reliability growth testing using Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 273-280.
    18. Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.
    19. Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
    20. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:126:y:2014:i:c:p:37-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.