IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0153904.html
   My bibliography  Save this article

Prediction of Cascading Failures in Spatial Networks

Author

Listed:
  • Yang Shunkun
  • Zhang Jiaquan
  • Lu Dan

Abstract

Cascading overload failures are widely found in large-scale parallel systems and remain a major threat to system reliability; therefore, they are of great concern to maintainers and managers of different systems. Accurate cascading failure prediction can provide useful information to help control networks. However, for a large, gradually growing network with increasing complexity, it is often impractical to explore the behavior of a single node from the perspective of failure propagation. Fortunately, overload failures that propagate through a network exhibit certain spatial-temporal correlations, which allows the study of a group of nodes that share common spatial and temporal characteristics. Therefore, in this study, we seek to predict the failure rates of nodes in a given group using machine-learning methods.We simulated overload failure propagations in a weighted lattice network that start with a center attack and predicted the failure percentages of different groups of nodes that are separated by a given distance. The experimental results of a feedforward neural network (FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that these different models can accurately predict the similar behavior of nodes in a given group during cascading overload propagation.

Suggested Citation

  • Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
  • Handle: RePEc:plo:pone00:0153904
    DOI: 10.1371/journal.pone.0153904
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153904
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153904&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0153904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    2. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wensheng & Karimi, Faezeh & Khalilpour, Kaveh & Green, David & Varvarigos, Manos, 2023. "Robustness analysis of electricity networks against failure or attack: The case of the Australian National Electricity Market (NEM)," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Accominotti, Olivier & Lucena-Piquero, Delio & Ugolini, Stefano, 2023. "Intermediaries’ substitutability and financial network resilience: A hyperstructure approach," Journal of Economic Dynamics and Control, Elsevier, vol. 153(C).
    3. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    4. Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Di Maio, Francesco & Pettorossi, Chiara & Zio, Enrico, 2023. "Entropy-driven Monte Carlo simulation method for approximating the survival signature of complex infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    7. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    8. Zhang, Jianhua & Wang, Ziqi & Wang, Shuliang & Shao, Wenchao & Zhao, Xun & Liu, Weizhi, 2021. "Vulnerability assessments of weighted urban rail transit networks with integrated coupled map lattices," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Limiao, Zhang & Daqing, Li & Pengju, Qin & Bowen, Fu & Yinan, Jiang & Zio, Enrico & Rui, Kang, 2016. "Reliability analysis of interdependent lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 120-125.
    10. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    12. Jensen, H.A. & Jerez, D.J., 2019. "A Bayesian model updating approach for detection-related problems in water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 100-112.
    13. Davila-Frias, Alex & Yodo, Nita & Le, Trung & Yadav, Om Prakash, 2023. "A deep neural network and Bayesian method based framework for all-terminal network reliability estimation considering degradation," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    16. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Zhou, Jian & Coit, David W. & Felder, Frank A. & Wang, Dali, 2021. "Resiliency-based restoration optimization for dependent network systems against cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    18. Jin, Yi & Zhang, Qingyuan & Chen, Yunxia & Lu, Zhendan & Zu, Tianpei, 2023. "Cascading failures modeling of electronic circuits with degradation using impedance network," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    19. Fang Zhou & Xiang He & Yongbo Yuan & Mingyuan Zhang, 2020. "Influence of Interlink Topology on Multilayer Network Robustness," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    20. Ding, Xiao & Wang, Huan & Zhang, Xi & Ma, Chuang & Zhang, Hai-Feng, 2024. "Dual nature of cyber–physical power systems and the mitigation strategies," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0153904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.