IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2945-d682035.html
   My bibliography  Save this article

Deep Cross-Project Software Reliability Growth Model Using Project Similarity-Based Clustering

Author

Listed:
  • Kyawt Kyawt San

    (Department of Computer Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan)

  • Hironori Washizaki

    (Department of Computer Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan)

  • Yoshiaki Fukazawa

    (Department of Computer Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan)

  • Kiyoshi Honda

    (Department of Information Systems, Osaka Institute of Technology, Hirakata City, Osaka 573-0196, Japan)

  • Masahiro Taga

    (e-Seikatsu Co., Ltd., Minato-ku, Tokyo 106-0047, Japan)

  • Akira Matsuzaki

    (e-Seikatsu Co., Ltd., Minato-ku, Tokyo 106-0047, Japan)

Abstract

Software reliability is an essential characteristic for ensuring the qualities of software products. Predicting the potential number of bugs from the beginning of a development project allows practitioners to make the appropriate decisions regarding testing activities. In the initial development phases, applying traditional software reliability growth models (SRGMs) with limited past data does not always provide reliable prediction result for decision making. To overcome this, herein, we propose a new software reliability modeling method called a deep cross-project software reliability growth model (DC-SRGM). DC-SRGM is a cross-project prediction method that uses features of previous projects’ data through project similarity. Specifically, the proposed method applies cluster-based project selection for the training data source and modeling by a deep learning method. Experiments involving 15 real datasets from a company and 11 open source software datasets show that DC-SRGM can more precisely describe the reliability of ongoing development projects than existing traditional SRGMs and the LSTM model.

Suggested Citation

  • Kyawt Kyawt San & Hironori Washizaki & Yoshiaki Fukazawa & Kiyoshi Honda & Masahiro Taga & Akira Matsuzaki, 2021. "Deep Cross-Project Software Reliability Growth Model Using Project Similarity-Based Clustering," Mathematics, MDPI, vol. 9(22), pages 1-22, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2945-:d:682035
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jinyong & Zhang, Ce, 2018. "Software reliability prediction using a deep learning model based on the RNN encoder–decoder," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    4. Ding, Zhiguo & Xing, Liudong, 2020. "Improved software defect prediction using Pruned Histogram-based isolation forest," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Dahye Lee & Inhong Chang & Hoang Pham, 2023. "Study of a New Software Reliability Growth Model under Uncertain Operating Environments and Dependent Failures," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    6. Li, Xingyu & Krivtsov, Vasiliy & Arora, Karunesh, 2022. "Attention-based deep survival model for time series data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Dehghani, Nariman L. & Zamanian, Soroush & Shafieezadeh, Abdollah, 2021. "Adaptive network reliability analysis: Methodology and applications to power grid," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2945-:d:682035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.