IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v540y2020ics0378437119316383.html
   My bibliography  Save this article

Time series based behavior pattern quantification analysis and prediction — A study on animal behavior

Author

Listed:
  • Jiang, Wuhao
  • Wang, Kai
  • Lv, Yan
  • Guo, Jianfeng
  • Ni, Zhongjin
  • Ni, Yihua

Abstract

The behavior pattern has regularity, reflecting the behavior feature and logic of the research object, and has a great influence on the prediction of the future state of the research object. However, the extant literature focuses on identification and classification of behavior pattern, lack of description and quantification research on behavior pattern. Behavior pattern quantified data can provide a good data foundation for behavior pattern prediction, further improving the accuracy of prediction. In this paper, we use the quantification algorithm based on Perceptually Important Point(PIP-QA) to analyze the time series, extract the hidden behavior pattern from the time series, and obtain the quantification description of the behavior pattern. A behavior pattern prediction model based on LSTM(BPPM) is also proposed to predict behavior pattern. Finally, the feeding behavior data of laying hen is used to carry out the experiment. The experimental results show the feasibility of the PIP-QA. And the BPPM model has good predictive ability and generalization ability.

Suggested Citation

  • Jiang, Wuhao & Wang, Kai & Lv, Yan & Guo, Jianfeng & Ni, Zhongjin & Ni, Yihua, 2020. "Time series based behavior pattern quantification analysis and prediction — A study on animal behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
  • Handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119316383
    DOI: 10.1016/j.physa.2019.122884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119316383
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rocco S, Claudio M., 2013. "Singular spectrum analysis and forecasting of failure time series," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 126-136.
    2. Ebadi, H. & Bolgorian, Meysam & Jafari, G.R., 2010. "Inverse statistics and information content," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5439-5446.
    3. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    4. Jun Lin & Lei Su & Yingjie Yan & Gehao Sheng & Da Xie & Xiuchen Jiang, 2018. "Prediction Method for Power Transformer Running State Based on LSTM_DBN Network," Energies, MDPI, vol. 11(7), pages 1-14, July.
    5. Nikolopoulos, K. & Goodwin, P. & Patelis, A. & Assimakopoulos, V., 2007. "Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches," European Journal of Operational Research, Elsevier, vol. 180(1), pages 354-368, July.
    6. Omane-Adjepong, Maurice & Boako, Gideon, 2017. "Long-range dependence in returns and volatility of global gold market amid financial crises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 188-202.
    7. Wei, Zhao & Tao, Tao & ZhuoShu, Ding & Zio, Enrico, 2013. "A dynamic particle filter-support vector regression method for reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 109-116.
    8. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang Shunkun & Zhang Jiaquan & Lu Dan, 2016. "Prediction of Cascading Failures in Spatial Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-11, April.
    2. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    3. Fei Mei & Yong Ren & Qingliang Wu & Chenyu Zhang & Yi Pan & Haoyuan Sha & Jianyong Zheng, 2018. "Online Recognition Method for Voltage Sags Based on a Deep Belief Network," Energies, MDPI, vol. 12(1), pages 1-16, December.
    4. Zhengwei Huang & Jin Huang & Jintao Min, 2022. "SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching," Energies, MDPI, vol. 15(20), pages 1-16, October.
    5. Yang Liu & Naiwei Lu & Xinfeng Yin & Mohammad Noori, 2016. "An adaptive support vector regression method for structural system reliability assessment and its application to a cable-stayed bridge," Journal of Risk and Reliability, , vol. 230(2), pages 204-219, April.
    6. Uddin, Gazi Salah & Shahzad, Syed Jawad Hussain & Boako, Gideon & Hernandez, Jose Areola & Lucey, Brian M., 2019. "Heterogeneous interconnections between precious metals: Evidence from asymmetric and frequency-domain spillover analysis," Resources Policy, Elsevier, vol. 64(C).
    7. Vinicius M. Netto & Joao Meirelles & Fabiano L. Ribeiro, 2017. "Social Interaction and the City: The Effect of Space on the Reduction of Entropy," Complexity, Hindawi, vol. 2017, pages 1-16, August.
    8. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
    9. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    10. Konstantinos Nikolopoulos, 2010. "Forecasting with quantitative methods: the impact of special events in time series," Applied Economics, Taylor & Francis Journals, vol. 42(8), pages 947-955.
    11. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    12. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    13. Netto, Vinicius M. & Brigatti, Edgardo & Meirelles, João & Ribeiro, Fabiano L. & Pace, Bruno & Cacholas, Caio & Sanches, Patricia Mara, 2018. "Cities, from information to interaction," SocArXiv jgz5d, Center for Open Science.
    14. Lee, Wing Yee & Goodwin, Paul & Fildes, Robert & Nikolopoulos, Konstantinos & Lawrence, Michael, 2007. "Providing support for the use of analogies in demand forecasting tasks," International Journal of Forecasting, Elsevier, vol. 23(3), pages 377-390.
    15. Wauters, Mathieu & Vanhoucke, Mario, 2017. "A Nearest Neighbour extension to project duration forecasting with Artificial Intelligence," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1097-1111.
    16. Yu, Lei, 2020. "A new continuum traffic flow model with two delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    18. Vincenzo Candila & Lucio Palazzo, 2020. "Neural Networks and Betting Strategies for Tennis," Risks, MDPI, vol. 8(3), pages 1-19, June.
    19. Mostafa H. Tawfeek, 2024. "Inter- and Intra-Driver Reaction Time Heterogeneity in Car-Following Situations," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    20. S. Buxton & Kostas Nikolopoulos & M. Khammash & P. Stern, 2015. "Modelling and Forecasting Branded and Generic Pharmaceutical Life Cycles: Assessment of the Number of Dispensed Units," Working Papers 15004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:540:y:2020:i:c:s0378437119316383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.