IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v153y2016icp180-192.html
   My bibliography  Save this article

Study of the nonlinear imperfect software debugging model

Author

Listed:
  • Wang, Jinyong
  • Wu, Zhibo

Abstract

In recent years there has been a dramatic proliferation of research on imperfect software debugging phenomena. Software debugging is a complex process and is affected by a variety of factors, including the environment, resources, personnel skills, and personnel psychologies. Therefore, the simple assumption that debugging is perfect is inconsistent with the actual software debugging process, wherein a new fault can be introduced when removing a fault. Furthermore, the fault introduction process is nonlinear, and the cumulative number of nonlinearly introduced faults increases over time. Thus, this paper proposes a nonlinear, NHPP imperfect software debugging model in consideration of the fact that fault introduction is a nonlinear process. The fitting and predictive power of the NHPP-based proposed model are validated through related experiments. Experimental results show that this model displays better fitting and predicting performance than the traditional NHPP-based perfect and imperfect software debugging models. S-confidence bounds are set to analyze the performance of the proposed model. This study also examines and discusses optimal software release-time policy comprehensively. In addition, this research on the nonlinear process of fault introduction is significant given the recent surge of studies on software-intensive products, such as cloud computing and big data.

Suggested Citation

  • Wang, Jinyong & Wu, Zhibo, 2016. "Study of the nonlinear imperfect software debugging model," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 180-192.
  • Handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:180-192
    DOI: 10.1016/j.ress.2016.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016300473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pievatolo, Antonio & Ruggeri, Fabrizio & Soyer, Refik, 2012. "A Bayesian hidden Markov model for imperfect debugging," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 11-21.
    2. P. K. Kapur & H. Pham & A. Gupta & P. C. Jha, 2011. "Software Reliability Growth Models," Springer Series in Reliability Engineering, in: Software Reliability Assessment with OR Applications, chapter 0, pages 49-95, Springer.
    3. Hoang Pham, 2006. "System Software Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-295-9, February.
    4. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    2. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    3. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    4. Wang, Jinyong & Zhang, Ce, 2018. "Software reliability prediction using a deep learning model based on the RNN encoder–decoder," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 73-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    2. Hiroyuki Okamura & Tadashi Dohi, 2016. "Phase-type software reliability model: parameter estimation algorithms with grouped data," Annals of Operations Research, Springer, vol. 244(1), pages 177-208, September.
    3. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    4. Peng, R. & Li, Y.F. & Zhang, W.J. & Hu, Q.P., 2014. "Testing effort dependent software reliability model for imperfect debugging process considering both detection and correction," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 37-43.
    5. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.
    6. Qing Tian & Chun-Wu Yeh & Chih-Chiang Fang, 2022. "Bayesian Decision Making of an Imperfect Debugging Software Reliability Growth Model with Consideration of Debuggers’ Learning and Negligence Factors," Mathematics, MDPI, vol. 10(10), pages 1-21, May.
    7. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    8. Gaver, Donald P. & Jacobs, Patricia A., 2014. "Reliability growth by failure mode removal," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 27-32.
    9. Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.
    10. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    11. Subhashis Chatterjee & Jeetendra B. Singh & Arunava Roy, 2015. "A structure-based software reliability allocation using fuzzy analytic hierarchy process," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 513-525, February.
    12. Utkin, Lev V. & Coolen, Frank P.A., 2018. "A robust weighted SVR-based software reliability growth model," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 93-101.
    13. Yaguang Yang, 2019. "Test based safety-critical software reliability estimation using Bayesian method and flow network structure," Journal of Risk and Reliability, , vol. 233(5), pages 847-856, October.
    14. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    15. Yi-Ting Chen & Edward W. Sun & Yi-Bing Lin, 2019. "Coherent quality management for big data systems: a dynamic approach for stochastic time consistency," Annals of Operations Research, Springer, vol. 277(1), pages 3-32, June.
    16. Chen, Gaige & Chen, Jinglong & Zi, Yanyang & Miao, Huihui, 2017. "Hyper-parameter optimization based nonlinear multistate deterioration modeling for deterioration level assessment and remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 517-526.
    17. Tahere Yaghoobi & Man-Fai Leung, 2023. "Modeling Software Reliability with Learning and Fatigue," Mathematics, MDPI, vol. 11(16), pages 1-20, August.
    18. Awat Ghomghaleh & Reza Khaloukakaie & Mohammad Ataei & Abbas Barabadi & Ali Nouri Qarahasanlou & Omeid Rahmani & Amin Beiranvand Pour, 2020. "Prediction of remaining useful life (RUL) of Komatsu excavator under reliability analysis in the Weibull-frailty model," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-16, July.
    19. Zhiguo Wang & Jinde Wang & Xue Liang, 2007. "Non-parametric Estimation for NHPP Software Reliability Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(1), pages 107-119.
    20. Triet Pham & Hoang Pham, 2019. "A generalized software reliability model with stochastic fault-detection rate," Annals of Operations Research, Springer, vol. 277(1), pages 83-93, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:153:y:2016:i:c:p:180-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.