IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v610y2023ics0378437122009682.html
   My bibliography  Save this article

Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity

Author

Listed:
  • Li, Qinyin
  • Cheng, Rongjun
  • Ge, Hongxia

Abstract

Short-term vehicle speed prediction is an essential part of Intelligent Transportation Systems (ITS), which influences the critical parameter for high-level energy management of electric vehicles. Accurate predictions of vehicle speed contribute to take timely countermeasures and enhance energy application efficiency. Deep learning is a hot research method in current prediction, which can already accurately predict vehicle speed. However, the prediction accuracy of the fixed algorithm is difficult to further improve after reaching a certain accuracy, and overfitting may occur in the process of improving the prediction accuracy. At the same time, driving behavior of drivers will affect the prediction effect to varying degrees. In order to verify the difference of speed prediction under different driving characteristics, a hybrid prediction model K-BiLSTM-GRU is proposed, which is combined the adaptive ability of K-means to reasonably classify samples and the advantage of bidirectional long short-term memory network (BiLSTM) and gated recurrent unit (GRU) to solve long-range dependencies and reduce overfitting. Firstly, a two-step method is used to denoise the NGSIM dataset, and K-means clustering method is used to cluster the data related to the car-following (CF) teams in the selected lane. After obtaining three types of drivers, the driving characteristics of the different types of drivers are analyzed. Secondly, the construction, training and prediction of the neural network is completed in the deep learning framework Keras. Finally, the model performance of verified by vehicle speed prediction through the actual speed dataset. The proposed hybrid model is compared with lots of current mainstream deep learning algorithms, the effectiveness of the K-BiLSTM-GRU method is validated. Meanwhile, the prediction performance of timid drivers is better than that of aggressive and neutral types. The results may provide some potential insights for vehicle speed prediction and electric vehicle energy consumption about different driving characteristics.

Suggested Citation

  • Li, Qinyin & Cheng, Rongjun & Ge, Hongxia, 2023. "Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
  • Handle: RePEc:eee:phsmap:v:610:y:2023:i:c:s0378437122009682
    DOI: 10.1016/j.physa.2022.128410
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009682
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128410?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Chao & Ma, Changxi & Wang, Ke & Cui, Zihao, 2022. "Predicting vacant parking space availability: A DWT-Bi-LSTM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    3. Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zhiyuan & Yang, Rui & Fang, Liang & Wang, Zhuo & Zhao, Yinghua, 2024. "Research on vehicle speed prediction model based on traffic flow information fusion," Energy, Elsevier, vol. 292(C).
    2. Wang, Yukuan & Liu, Jingxian & Liu, Ryan Wen & Wu, Weihuang & Liu, Yang, 2023. "Interval prediction of vessel trajectory based on lower and upper bound estimation and attention-modified LSTM with bayesian optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    3. Xu Wang & Ying Huang & Jian Wang, 2023. "Study on Driver-Oriented Energy Management Strategy for Hybrid Heavy-Duty Off-Road Vehicles under Aggressive Transient Operating Condition," Sustainability, MDPI, vol. 15(9), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    2. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    3. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    4. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    5. Ke Song & Yimin Wang & Cancan An & Hongjie Xu & Yuhang Ding, 2021. "Design and Validation of Energy Management Strategy for Extended-Range Fuel Cell Electric Vehicle Using Bond Graph Method," Energies, MDPI, vol. 14(2), pages 1-31, January.
    6. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    7. Tian, Yuan & Han, Minghao & Kulkarni, Chetan & Fink, Olga, 2022. "A prescriptive Dirichlet power allocation policy with deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Pan, Rui & Yang, Duo & Wang, Yujie & Chen, Zonghai, 2020. "Health degradation assessment of proton exchange membrane fuel cell based on an analytical equivalent circuit model," Energy, Elsevier, vol. 207(C).
    9. Pinthurat, Watcharakorn & Hredzak, Branislav, 2021. "Fully decentralized control strategy for heterogeneous energy storage systems distributed in islanded DC datacentre microgrid," Energy, Elsevier, vol. 231(C).
    10. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    11. Wang, Yue & Zeng, Xiaohua & Song, Dafeng, 2020. "Hierarchical optimal intelligent energy management strategy for a power-split hybrid electric bus based on driving information," Energy, Elsevier, vol. 199(C).
    12. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    13. Liao, Ziyi & Liu, Minghui & Du, Bowen & Zhou, Haijun & Li, Linchao, 2022. "A temporal and spatial prediction method for urban pipeline network based on deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    14. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    15. Deng, Huiwen & Hu, Weihao & Cao, Di & Chen, Weirong & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2022. "Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression," Energy, Elsevier, vol. 244(PA).
    16. Rongjun Cheng & Qinyin Li & Fuzhou Chen & Baobin Miao, 2024. "A Dual-Stage Attention-Based Vehicle Speed Prediction Model Considering Driver Heterogeneity with Fuel Consumption and Emissions Analysis," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    17. Liu, Huanlong & Chen, Guanpeng & Xie, Chixin & Li, Dafa & Wang, Jiawei & Li, Shun, 2020. "Research on energy-saving characteristics of battery-powered electric-hydrostatic hydraulic hybrid rail vehicles," Energy, Elsevier, vol. 205(C).
    18. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    19. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2021. "Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning," Energy, Elsevier, vol. 226(C).
    20. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:610:y:2023:i:c:s0378437122009682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.