IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i9p7367-d1135696.html
   My bibliography  Save this article

Air Pollution Prediction Based on Discrete Wavelets and Deep Learning

Author

Listed:
  • Ying Shu

    (School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
    These authors contributed equally to this work.)

  • Chengfu Ding

    (Focused Photonics (Hangzhou) Inc., Hangzhou 310052, China
    These authors contributed equally to this work.)

  • Lingbing Tao

    (School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Chentao Hu

    (School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Zhixin Tie

    (School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
    Keyi College, Zhejiang Sci-Tech University, Shaoxing 312369, China)

Abstract

Air pollution directly affects people’s life and work and is an important factor affecting public health. An accurate prediction of air pollution can provide a credible foundation for determining the social activities of individuals. Scholars have, thus, proposed a variety of models and techniques for predicting air pollution. However, most of these studies are focused on the prediction of individual pollution factors and perform poorly when multiple pollutants need to be predicted. This paper offers a DW-CAE model that may strike a balance between overall accuracy and local univariate prediction accuracy in order to observe the trend of air pollution more comprehensively. The model combines deep learning and signal processing techniques by employing discrete wavelet transform to obtain the high and low-frequency features of the target sequence, designing a feature extraction module to capture the relationship between the variables, and feeding the resulting feature matrix to an LSTM-based autoencoder for prediction. The DW-CAE model was used to make predictions on the Beijing PM 2.5 dataset and the Yining air pollution dataset, and its prediction accuracy was compared to that of eight baseline models, such as LSTM, IMV-Full, and DARNN. The evaluation results indicate that the proposed DW-CAE model is more accurate than other baseline models at predicting single and multiple pollution factors, and the R 2 of each variable is all higher than 93% for the overall prediction of the six air pollutants. This demonstrates the efficacy of the DW-CAE model, which can give technical and theoretical assistance for the forecast, prevention, and control of overall air pollution.

Suggested Citation

  • Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7367-:d:1135696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/9/7367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/9/7367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Andrew & Snyder, Ralph D., 1990. "Structural time series models in inventory control," International Journal of Forecasting, Elsevier, vol. 6(2), pages 187-198, July.
    2. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    3. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, January.
    4. Zeng, Chao & Ma, Changxi & Wang, Ke & Cui, Zihao, 2022. "Predicting vacant parking space availability: A DWT-Bi-LSTM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Xue-Bo Jin & Nian-Xiang Yang & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Hybrid Model Based on EMD with Classification by Frequency Characteristics for Long-Term Air Quality Prediction," Mathematics, MDPI, vol. 8(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    3. Yuo-Hsien Shiau & Su-Fen Yang & Rishan Adha & Syamsiyatul Muzayyanah, 2022. "Modeling Industrial Energy Demand in Relation to Subsector Manufacturing Output and Climate Change: Artificial Neural Network Insights," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    4. S. Sriram & Pradeep K. Chintagunta & Ramya Neelamegham, 2006. "Effects of Brand Preference, Product Attributes, and Marketing Mix Variables in Technology Product Markets," Marketing Science, INFORMS, vol. 25(5), pages 440-456, September.
    5. Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
    6. Peilun He & Karol Binkowski & Nino Kordzakhia & Pavel Shevchenko, 2021. "On Modelling of Crude Oil Futures in a Bivariate State-Space Framework," Papers 2108.01886, arXiv.org.
    7. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    8. Syntetos, A.A. & Teunter, R.H., 2014. "On the calculation of safety stocks," Research Report 14003-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    9. Yasir Riaz & Choudhry T. Shehzad & Zaghum Umar, 2021. "The sovereign yield curve and credit ratings in GIIPS," International Review of Finance, International Review of Finance Ltd., vol. 21(3), pages 895-916, September.
    10. Riezebos, Jan & Zhu, Stuart X., 2020. "Inventory control with seasonality of lead times," Omega, Elsevier, vol. 92(C).
    11. Pavel Vidal & Gilberto Ramírez & Lya Paola Sierra, 2018. "¿Por qué el Valle del Cauca ha crecido más que el promedio nacional? Un análisis regional de los ciclos y los choques económicos," Working Papers 33, Faculty of Economics and Management, Pontificia Universidad Javeriana Cali.
    12. Cartea, Álvaro & Karyampas, Dimitrios, 2011. "Volatility and covariation of financial assets: A high-frequency analysis," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3319-3334.
    13. Agnieszka Gehringer & Thomas Mayer, 2021. "Measuring the Business Cycle Chronology with a Novel Business Cycle Indicator for Germany," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(1), pages 71-89, April.
    14. Gianluca Cubadda, 2007. "A Reduced Rank Regression Approach to Coincident and Leading Indexes Building," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(2), pages 271-292, April.
    15. Vegard H ghaug Larsen & Leif Anders Thorsrud, 2018. "Business cycle narratives," Working Papers No 6/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    16. Moïse Sidiropoulos & Jamel Trabelsi, 2001. "Les chocs monétaires et la persistance du taux de chômage," Économie et Prévision, Programme National Persée, vol. 148(2), pages 41-47.
    17. Qin XIAO & Randolph TAN GEE KWANG, 2010. "Kalman Filter Estimation of Property Price Bubbles in Seoul," EcoMod2004 330600164, EcoMod.
    18. Harry M. Karamujic, 2011. "Comparative Analysis of Australian Residential Mortgage (Home Loan) Interest Rates," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 5(3), pages 311-341, August.
    19. Aldubyan, Mohammad & Gasim, Anwar, 2021. "Energy price reform in Saudi Arabia: Modeling the economic and environmental impacts and understanding the demand response," Energy Policy, Elsevier, vol. 148(PB).
    20. Jesús Fernández-Villaverde & Pablo A. Guerrón-Quintana, 2021. "Estimating DSGE Models: Recent Advances and Future Challenges," Annual Review of Economics, Annual Reviews, vol. 13(1), pages 229-252, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:9:p:7367-:d:1135696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.