IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v187y2024ics0960077924009433.html
   My bibliography  Save this article

Real-time rear-end conflict prediction on congested highways sections using trajectory data

Author

Listed:
  • An, Xudong
  • Wu, Xingjian
  • Liu, Weiqi
  • Cheng, Rongjun

Abstract

Predicting rear-end conflicts in advance can avoid potential crashes and significantly improve road safety, especially in congested road sections. Many existing studies adopt macroscopic aggregated traffic flow state features and or environment features for rear-end conflicts prediction, which seems to overlook the impact of the temporal trends of various features during the conflict process on the outcomes. Thus, this paper uses microscopic trajectory data of front and rear vehicles for conflict prediction and explored the impact of trajectory changes trend on conflicts formation. A Gated Recurrent Unit (GRU) is employed to learn and encode conflict and non-conflict trajectory data and perform binary classification. The model has a 93 % recall and a 1.41 % false alarm rate. The Local Interpretable Model-agnostic Explanations (LIME) tool also explains the relationships between predicted conflict probability and input microscopic trajectory data. From the time analysis of the input trajectory using LIME, the following conclusions can be drawn. In congested road segments, when the speed of the leading vehicle is below 3 m/s and the speed of the following vehicle is above 4 m/s, it has a significant positive effect on the occurrence of conflicts. And some aggressive acceleration behaviors of drivers have the positive effect also. In addition, the reasons for conflicts among most vehicles are identical Because their feature distributions are similar. These findings can provide targeted insights for the management of ATM in congested road segments.

Suggested Citation

  • An, Xudong & Wu, Xingjian & Liu, Weiqi & Cheng, Rongjun, 2024. "Real-time rear-end conflict prediction on congested highways sections using trajectory data," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009433
    DOI: 10.1016/j.chaos.2024.115391
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924009433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115391?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:187:y:2024:i:c:s0960077924009433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.