IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v73y2015icp59-80.html
   My bibliography  Save this article

Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach

Author

Listed:
  • Taylor, Jeffrey
  • Zhou, Xuesong
  • Rouphail, Nagui M.
  • Porter, Richard J.

Abstract

After first extending Newell’s car-following model to incorporate time-dependent parameters, this paper describes the Dynamic Time Warping (DTW) algorithm and its application for calibrating this microscopic simulation model by synthesizing driver trajectory data. Using the unique capabilities of the DTW algorithm, this paper attempts to examine driver heterogeneity in car-following behavior, as well as the driver’s heterogeneous situation-dependent behavior within a trip, based on the calibrated time-varying response times and critical jam spacing. The standard DTW algorithm is enhanced to address a number of estimation challenges in this specific application, and a numerical experiment is presented with vehicle trajectory data extracted from the Next Generation Simulation (NGSIM) project for demonstration purposes. The DTW algorithm is shown to be a reasonable method for processing large vehicle trajectory datasets, but requires significant data reduction to produce reasonable results when working with high resolution vehicle trajectory data. Additionally, singularities present an interesting match solution set to potentially help identify changing driver behavior; however, they must be avoided to reduce analysis complexity.

Suggested Citation

  • Taylor, Jeffrey & Zhou, Xuesong & Rouphail, Nagui M. & Porter, Richard J., 2015. "Method for investigating intradriver heterogeneity using vehicle trajectory data: A Dynamic Time Warping approach," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 59-80.
  • Handle: RePEc:eee:transb:v:73:y:2015:i:c:p:59-80
    DOI: 10.1016/j.trb.2014.12.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261514002264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2014.12.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    2. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    3. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    4. Ahn, Soyoung & Cassidy, Michael J. & Laval, Jorge, 2004. "Verification of a simplified car-following theory," Transportation Research Part B: Methodological, Elsevier, vol. 38(5), pages 431-440, June.
    5. Chiabaut, Nicolas & Leclercq, Ludovic & Buisson, Christine, 2010. "From heterogeneous drivers to macroscopic patterns in congestion," Transportation Research Part B: Methodological, Elsevier, vol. 44(2), pages 299-308, February.
    6. Deng, Wen & Lei, Hao & Zhou, Xuesong, 2013. "Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 132-157.
    7. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    8. Newell, G. F., 2002. "A simplified car-following theory: a lower order model," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 195-205, March.
    9. Wagner, Peter, 2012. "Analyzing fluctuations in car-following," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1384-1392.
    10. Zheng, Zuduo & Ahn, Soyoung & Chen, Danjue & Laval, Jorge, 2011. "Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1378-1388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishi, Ryosuke, 2020. "Theoretical conditions for restricting secondary jams in jam-absorption driving scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    2. Junjie Zhang & Can Yang & Jun Zhang & Haojie Ji, 2022. "Effect of Five Driver’s Behavior Characteristics on Car-Following Safety," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    3. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    4. Liang Chen & Jiming Xie & Simin Wu & Fengxiang Guo & Zheng Chen & Wenqi Tan, 2021. "Validation of Vehicle Driving Simulator from Perspective of Velocity and Trajectory Based Driving Behavior under Curve Conditions," Energies, MDPI, vol. 14(24), pages 1-23, December.
    5. Rongjun Cheng & Qinyin Li & Fuzhou Chen & Baobin Miao, 2024. "A Dual-Stage Attention-Based Vehicle Speed Prediction Model Considering Driver Heterogeneity with Fuel Consumption and Emissions Analysis," Sustainability, MDPI, vol. 16(4), pages 1-24, February.
    6. Li, Qinyin & Cheng, Rongjun & Ge, Hongxia, 2023. "Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Nishi, Ryosuke & Watanabe, Takashi, 2022. "System-size dependence of a jam-absorption driving strategy to remove traffic jam caused by a sag under the presence of traffic instability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    8. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    9. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruru Xing & Yihan Zhang & Xiaoyu Cai & Jupeng Lu & Bo Peng & Tao Yang, 2023. "Vehicle-Trajectory Prediction Method for an Extra-Long Tunnel Based on Section Traffic Data," Sustainability, MDPI, vol. 15(8), pages 1-30, April.
    2. Wei, Yuguang & Avcı, Cafer & Liu, Jiangtao & Belezamo, Baloka & Aydın, Nizamettin & Li, Pengfei(Taylor) & Zhou, Xuesong, 2017. "Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 102-129.
    3. Tian, Junfang & Zhu, Chenqiang & Chen, Danjue & Jiang, Rui & Wang, Guanying & Gao, Ziyou, 2021. "Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 160-176.
    4. Zheng, Zuduo & Su, Dongcai, 2016. "Traffic state estimation through compressed sensing and Markov random field," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 525-554.
    5. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    6. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    7. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    8. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    9. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    10. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    11. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    12. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    13. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    14. Han, Youngjun & Ahn, Soyoung, 2018. "Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 146-166.
    15. Delpiano, Rafael & Laval, Jorge & Coeymans, Juan Enrique & Herrera, Juan Carlos, 2015. "The kinematic wave model with finite decelerations: A social force car-following model approximation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 182-193.
    16. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    17. Zhou, Fang & Li, Xiaopeng & Ma, Jiaqi, 2017. "Parsimonious shooting heuristic for trajectory design of connected automated traffic part I: Theoretical analysis with generalized time geography," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 394-420.
    18. Ma, Tao & Zhou, Zhou & Abdulhai, Baher, 2015. "Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 27-47.
    19. Sun, Zhe & Jin, Wen-Long & Ritchie, Stephen G., 2017. "Simultaneous estimation of states and parameters in Newell’s simplified kinematic wave model with Eulerian and Lagrangian traffic data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 106-122.
    20. Duret, Aurélien & Yuan, Yufei, 2017. "Traffic state estimation based on Eulerian and Lagrangian observations in a mesoscopic modeling framework," Transportation Research Part B: Methodological, Elsevier, vol. 101(C), pages 51-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:73:y:2015:i:c:p:59-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.