IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v599y2022ics0378437122003570.html
   My bibliography  Save this article

Predicting vacant parking space availability: A DWT-Bi-LSTM model

Author

Listed:
  • Zeng, Chao
  • Ma, Changxi
  • Wang, Ke
  • Cui, Zihao

Abstract

Accurate and efficient prediction of vacant parking space availability, despite its great significance, is no easy a task. How to address the noise in the original data and how to improve the efficiency and accuracy of prediction are among the thorny problems many existing prediction methods are confronted with. To overcome these problems, this paper proposes a DWT-Bi-LSTM model for parking space availability prediction based on historical parking data. This model combines wavelet transform (WT) and bidirectional long short-term memory (Bi-LSTM). Firstly, a multi-scale decomposition of the time series is performed using WT, and the detailed series at each scale are de-noised using the threshold method. Next, a LSTM model based on Bi-LSTM neural network is established to learn from the historical denoised data and the predicted time series are further trained to effectively avoid large prediction error. Finally, the prediction accuracy is further improved by taking advantage of the capacity of the forward and backward LSTM of capturing time-series and long-range dependence. The effectiveness of the proposed model is verified using the real-world data of a parking lot in Chongqing, China and the experimental results show that compared with other prediction methods, the proposed model demonstrates higher prediction accuracy and faster training speed under the same conditions.

Suggested Citation

  • Zeng, Chao & Ma, Changxi & Wang, Ke & Cui, Zihao, 2022. "Predicting vacant parking space availability: A DWT-Bi-LSTM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
  • Handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003570
    DOI: 10.1016/j.physa.2022.127498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122003570
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.127498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao, Jun & Lou, Yingyan & Frisby, Joshua, 2018. "How likely am I to find parking? – A practical model-based framework for predicting parking availability," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 19-39.
    2. Peng, Yanni & Xiang, Wanli, 2020. "Short-term traffic volume prediction using GA-BP based on wavelet denoising and phase space reconstruction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingwei Xue & Jiaqing Wang & Jiyang Yi & Yang Wei & Kaijian Huang & Daming Ge & Ruiyu Sun, 2023. "Optimal Parking Path Planning and Parking Space Selection Based on the Entropy Power Method and Bayesian Network: A Case Study in an Indoor Parking Lot," Sustainability, MDPI, vol. 15(11), pages 1-25, May.
    2. Matthias Templ, 2023. "Enhancing Precision in Large-Scale Data Analysis: An Innovative Robust Imputation Algorithm for Managing Outliers and Missing Values," Mathematics, MDPI, vol. 11(12), pages 1-22, June.
    3. Wen Huan Ai & Ming Ming Wang & Da Wei Liu, 2024. "Saddle-node bifurcation control of macroscopic traffic flow model considering vehicle braking effect," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(5), pages 1-13, May.
    4. Xie, Minghui & Zhang, Xinying & Wu, Zhouhao & Wei, Sen & Gao, Yanan & Wang, Yuanqing, 2023. "A shared parking optimization framework based on dynamic resource allocation and path planning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    5. Li, Qinyin & Cheng, Rongjun & Ge, Hongxia, 2023. "Short-term vehicle speed prediction based on BiLSTM-GRU model considering driver heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Hu, Guojing & Whalin, Robert W. & Kwembe, Tor A. & Lu, Weike, 2023. "Short-term traffic flow prediction based on secondary hybrid decomposition and deep echo state networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    7. Liao, Ziyi & Liu, Minghui & Du, Bowen & Zhou, Haijun & Li, Linchao, 2022. "A temporal and spatial prediction method for urban pipeline network based on deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    8. Abou Houran, Mohamad & Salman Bukhari, Syed M. & Zafar, Muhammad Hamza & Mansoor, Majad & Chen, Wenjie, 2023. "COA-CNN-LSTM: Coati optimization algorithm-based hybrid deep learning model for PV/wind power forecasting in smart grid applications," Applied Energy, Elsevier, vol. 349(C).
    9. Ying Shu & Chengfu Ding & Lingbing Tao & Chentao Hu & Zhixin Tie, 2023. "Air Pollution Prediction Based on Discrete Wavelets and Deep Learning," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    10. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek, & Legros, Benjamin & Fransoo, Jan C., 2021. "Performance evaluation of stochastic systems with dedicated delivery bays and general on-street parking," Other publications TiSEM 09ed9572-d59c-4f28-a9c4-b, Tilburg University, School of Economics and Management.
    2. Chen, Xinqiang & Chen, Huixing & Yang, Yongsheng & Wu, Huafeng & Zhang, Wenhui & Zhao, Jiansen & Xiong, Yong, 2021. "Traffic flow prediction by an ensemble framework with data denoising and deep learning model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    3. Legros, Benjamin & Fransoo, Jan C., 2024. "Admission and pricing optimization of on-street parking with delivery bays," European Journal of Operational Research, Elsevier, vol. 312(1), pages 138-149.
    4. Marialisa Nigro & Marina Ferrara & Rosita De Vincentis & Carlo Liberto & Gaetano Valenti, 2021. "Data Driven Approaches for Sustainable Development of E-Mobility in Urban Areas," Energies, MDPI, vol. 14(13), pages 1-19, July.
    5. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    6. Niu, Zhipeng & Hu, Xiaowei & Fatmi, Mahmudur & Qi, Shouming & Wang, Siqing & Yang, Haihua & An, Shi, 2023. "Parking occupancy prediction under COVID-19 anti-pandemic policies: A model based on a policy-aware temporal convolutional network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    7. Hou, Yue & Zhang, Di & Li, Da & Deng, Zhiyuan, 2024. "Regional traffic flow combination prediction model considering virtual space of the road network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    8. Sheng-Ming Wang & Wei-Min Cheng, 2023. "Fast Way to Predict Parking Lots Availability: For Shared Parking Lots Based on Dynamic Parking Fee System," Future Internet, MDPI, vol. 15(3), pages 1-22, February.
    9. Yang, Hongtai & Ping, An & Wei, Hongmin & Zhai, Guocong, 2023. "Unique in the metro system: The likelihood to re-identify a metro user with limited trajectory points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    10. Min Li & Mengshan Li & Bilong Liu & Jiang Liu & Zhen Liu & Dijia Luo, 2022. "Spatio-Temporal Traffic Flow Prediction Based on Coordinated Attention," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    11. Wang, Ke & Ma, Changxi & Qiao, Yihuan & Lu, Xijin & Hao, Weining & Dong, Sheng, 2021. "A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    12. Tao Wang & Sixuan Li & Wenyong Li & Quan Yuan & Jun Chen & Xiang Tang, 2023. "A Short-Term Parking Demand Prediction Framework Integrating Overall and Internal Information," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    13. Fei Qu & Yi-Ting Wang & Wen-Hui Hou & Xiao-Yu Zhou & Xiao-Kang Wang & Jun-Bo Li & Jian-Qiang Wang, 2022. "Forecasting of Automobile Sales Based on Support Vector Regression Optimized by the Grey Wolf Optimizer Algorithm," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
    14. Li, Baibing, 2022. "Stochastic modeling and adaptive forecasting for parking space availability with drivers’ time-varying arrival/departure behavior," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 313-332.
    15. Yingli Wu & Xin Li & Qingquan Liu & Guangji Tong, 2022. "The Analysis of Credit Risks in Agricultural Supply Chain Finance Assessment Model Based on Genetic Algorithm and Backpropagation Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1269-1292, December.
    16. Ma, Changxi & Zhao, Mingxi & Huang, Xiaoting & Zhao, Yongpeng, 2024. "Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    17. Ogulenko, Aleksey & Benenson, Itzhak & Fulman, Nir, 2022. "The nature of the on-street parking search," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 48-68.
    18. Ma, Changxi & Zhao, Mingxi, 2023. "Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    19. Huang, Haichao & Chen, Jingya & Sun, Rui & Wang, Shuang, 2022. "Short-term traffic prediction based on time series decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.