IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224033206.html
   My bibliography  Save this article

An energy management strategy for fuel-cell hybrid electric vehicles based on model predictive control with a variable time domain

Author

Listed:
  • Zheng, Weiguang
  • Ma, Mengcheng
  • Xu, Enyong
  • Huang, Qibai

Abstract

Fuel-cell hybrid electric vehicles (FCHEVs) are emerging as a pivotal model for future new energy vehicles due to their high efficiency and zero pollution. Crafting an effective energy management strategy is crucial for enhancing the robustness and economic viability of these vehicles. Therefore, an energy management strategy (EMS) for FCHEVs was proposed based on model predictive control (MPC) with a variable time domain. This approach integrated driving pattern recognition and model predictive control to overcome the robustness challenges faced by conventional EMS. Variational modal decomposition (VMD) was integrated with a radial basis function neural network for velocity predictions across various frequencies, which mitigated the effect of prediction accuracy on vehicles’ energy efficiency. Additionally, driving pattern recognition (DPR) was used to determine the driving condition online, which enhanced the influence of prediction duration on energy efficiency. This system adapted the prediction duration to the current driving condition to optimize hydrogen consumption. The velocity prediction model achieved 75.61 % of error reduction, which saved 4.40 % of hydrogen based on simulations. Besides, the model demonstrated enhanced adaptability to unpredictable driving environments.

Suggested Citation

  • Zheng, Weiguang & Ma, Mengcheng & Xu, Enyong & Huang, Qibai, 2024. "An energy management strategy for fuel-cell hybrid electric vehicles based on model predictive control with a variable time domain," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033206
    DOI: 10.1016/j.energy.2024.133544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224033206
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, N. & Hannan, M.A. & Mohamed, A. & Ker, P.J. & Majlan, E.H. & Wan Daud, W.R., 2018. "Optimization of energy management system for fuel-cell hybrid electric vehicles: Issues and recommendations," Applied Energy, Elsevier, vol. 228(C), pages 2061-2079.
    2. Li, Xunming & Han, Lijin & Liu, Hui & Wang, Weida & Xiang, Changle, 2019. "Real-time optimal energy management strategy for a dual-mode power-split hybrid electric vehicle based on an explicit model predictive control algorithm," Energy, Elsevier, vol. 172(C), pages 1161-1178.
    3. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    4. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    5. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    6. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    7. Pérez, Laura V. & Bossio, Guillermo R. & Moitre, Diego & García, Guillermo O., 2006. "Optimization of power management in an hybrid electric vehicle using dynamic programming," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 73(1), pages 244-254.
    8. Feroldi, Diego & Carignano, Mauro, 2016. "Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles," Applied Energy, Elsevier, vol. 183(C), pages 645-658.
    9. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
    10. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enyong Xu & Mengcheng Ma & Weiguang Zheng & Qibai Huang, 2023. "An Energy Management Strategy for Fuel-Cell Hybrid Commercial Vehicles Based on Adaptive Model Prediction," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    2. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Yixv Qin & Zhongxing Li & Guoqing Geng & Bo Wang, 2025. "Approximate Globally Optimal Energy Management Strategy for Fuel Cell Hybrid Mining Trucks Based on Rule-Interposing Balance Cost Minimization," Sustainability, MDPI, vol. 17(4), pages 1-28, February.
    4. Ruan, Shumin & Ma, Yue & Yang, Ningkang & Xiang, Changle & Li, Xunming, 2022. "Real-time energy-saving control for HEVs in car-following scenario with a double explicit MPC approach," Energy, Elsevier, vol. 247(C).
    5. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    6. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    7. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    9. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    10. Liu, Hanwu & Lei, Yulong & Sun, Wencai & Chang, Cheng & Jiang, Wei & Liu, Yuwei & Hu, Jianlong, 2024. "Research on approximate optimal energy management and multi-objective optimization of connected automated range-extended electric vehicle," Energy, Elsevier, vol. 306(C).
    11. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    12. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    13. Ke Song & Yimin Wang & Cancan An & Hongjie Xu & Yuhang Ding, 2021. "Design and Validation of Energy Management Strategy for Extended-Range Fuel Cell Electric Vehicle Using Bond Graph Method," Energies, MDPI, vol. 14(2), pages 1-31, January.
    14. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    15. Huang, Ruchen & He, Hongwen & Zhao, Xuyang & Wang, Yunlong & Li, Menglin, 2022. "Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm," Applied Energy, Elsevier, vol. 321(C).
    16. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    17. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    18. Changqing Du & Shiyang Huang & Yuyao Jiang & Dongmei Wu & Yang Li, 2022. "Optimization of Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles Based on Dynamic Programming," Energies, MDPI, vol. 15(12), pages 1-25, June.
    19. Laura Zecchi & Giulia Sandrini & Marco Gadola & Daniel Chindamo, 2022. "Modeling of a Hybrid Fuel Cell Powertrain with Power Split Logic for Onboard Energy Management Using a Longitudinal Dynamics Simulation Tool," Energies, MDPI, vol. 15(17), pages 1-18, August.
    20. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.