IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v141y2020ics0960077920306792.html
   My bibliography  Save this article

Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives

Author

Listed:
  • Nabi, Khondoker Nazmoon
  • Abboubakar, Hamadjam
  • Kumar, Pushpendra

Abstract

In this work, a new compartmental mathematical model of COVID-19 pandemic has been proposed incorporating imperfect quarantine and disrespectful behavior of citizens towards lockdown policies, which are evident in most of the developing countries. An integer derivative model has been proposed initially and then the formula for calculating basic reproductive number, R0 of the model has been presented. Cameroon has been considered as a representative for the developing countries and the epidemic threshold, R0 has been estimated to be ~ 3.41 (95%CI:2.2−4.4) as of July 9, 2020. Using real data compiled by the Cameroonian government, model calibration has been performed through an optimization algorithm based on renowned trust-region-reflective (TRR) algorithm. Based on our projection results, the probable peak date is estimated to be on August 1, 2020 with approximately 1073 (95%CI:714−1654) daily confirmed cases. The tally of cumulative infected cases could reach ~ 20, 100 (95%CI:17,343−24,584) cases by the end of August 2020. Later, global sensitivity analysis has been applied to quantify the most dominating model mechanisms that significantly affect the progression dynamics of COVID-19. Importantly, Caputo derivative concept has been performed to formulate a fractional model to gain a deeper insight into the probable peak dates and sizes in Cameroon. By showing the existence and uniqueness of solutions, a numerical scheme has been constructed using the Adams-Bashforth-Moulton method. Numerical simulations have enlightened the fact that if the fractional order α is close to unity, then the solutions will converge to the integer model solutions, and the decrease of the fractional-order parameter (0 < α < 1) leads to the delaying of the epidemic peaks.

Suggested Citation

  • Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920306792
    DOI: 10.1016/j.chaos.2020.110283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920306792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sadeghi, S. & Jafari, H. & Nemati, S., 2020. "Operational matrix for Atangana–Baleanu derivative based on Genocchi polynomials for solving FDEs," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    2. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    4. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    5. Abdon Atangana & Necdet Bildik, 2013. "Approximate Solution of Tuberculosis Disease Population Dynamics Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, June.
    6. Atangana, Abdon, 2020. "Fractional discretization: The African’s tortoise walk," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Sene, Ndolane, 2020. "SIR epidemic model with Mittag–Leffler fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    8. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.
    9. Nabi, Khondoker Nazmoon, 2020. "Forecasting COVID-19 pandemic: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Pushpendra & Govindaraj, V. & Erturk, Vedat Suat, 2022. "A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    2. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Abboubakar, Hamadjam & Kouchéré Guidzavaï, Albert & Yangla, Joseph & Damakoa, Irépran & Mouangue, Ruben, 2021. "Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    6. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    7. Ullah, Mohammad Sharif & Higazy, M. & Kabir, K.M. Ariful, 2022. "Dynamic analysis of mean-field and fractional-order epidemic vaccination strategies by evolutionary game approach," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Abboubakar, Hamadjam & Racke, Reinhard, 2021. "Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    9. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    11. Nabi, Khondoker Nazmoon & Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Projections and fractional dynamics of COVID-19 with optimal control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    14. Ullah, Mohammad Sharif & Higazy, M. & Ariful Kabir, K.M., 2022. "Modeling the epidemic control measures in overcoming COVID-19 outbreaks: A fractional-order derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Tsvetkov, V.P. & Mikheev, S.A. & Tsvetkov, I.V. & Derbov, V.L. & Gusev, A.A. & Vinitsky, S.I., 2022. "Modeling the multifractal dynamics of COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Abdo, Mohammed S. & Abdeljawad, Thabet & Ali, Saeed M. & Shah, Kamal & Jarad, Fahd, 2020. "Existence of positive solutions for weighted fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Deniz, Sinan, 2021. "Optimal perturbation iteration method for solving fractional FitzHugh-Nagumo equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Riaz, M.B. & Iftikhar, N., 2020. "A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Addai, Emmanuel & Zhang, Lingling & Ackora-Prah, Joseph & Gordon, Joseph Frank & Asamoah, Joshua Kiddy K. & Essel, John Fiifi, 2022. "Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Erturk, Vedat Suat & Kumar, Pushpendra, 2020. "Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Etemad, Sina & Avci, Ibrahim & Kumar, Pushpendra & Baleanu, Dumitru & Rezapour, Shahram, 2022. "Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    11. Nabi, Khondoker Nazmoon & Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Projections and fractional dynamics of COVID-19 with optimal control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor, 2022. "Generalized fractional strategy for recommender systems with chaotic ratings behavior," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    14. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    16. Zhang, Meihui & Jia, Jinhong & Zheng, Xiangcheng, 2023. "Numerical approximation and fast implementation to a generalized distributed-order time-fractional option pricing model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Kaviya, R. & Priyanka, M. & Muthukumar, P., 2022. "Mean-square exponential stability of impulsive conformable fractional stochastic differential system with application on epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Dlamini, A. & Doungmo Goufo, E.F., 2023. "Generation of self-similarity in a chaotic system of attractors with many scrolls and their circuit’s implementation," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Verma, S. & Viswanathan, P., 2018. "A note on Katugampola fractional calculus and fractal dimensions," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 220-230.
    20. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:141:y:2020:i:c:s0960077920306792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.