IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v170y2023ics0960077923002746.html
   My bibliography  Save this article

Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator

Author

Listed:
  • Farman, Muhammad
  • Sarwar, Rabia
  • Akgul, Ali

Abstract

In this paper, studying a sustainable approach to see the dynamics of infection in the plant by using a fractal fractional derivative. To depict a time-fractional order plant virus model including disease consequences, we suggested a set of fractional differential equations. For the fractional order system, both qualitative and quantitative studies are carried out. To prove the existence and uniqueness of the proposed model with the effect of global derivative, Linear growth and Lipschitz conditions are used. Positiveness and boundedness of solutions of the fractional order model are verified. Local stability analysis and global stability is verified by using the Lyapunov function with the first and second derivative tests. Sensitivity analysis is performed to see the influence of parameters on the fractional order model. To study the effect of the fractional operator, which demonstrates the impact of the illness on plants, solutions are generated with a two-step Lagrange polynomial in the generalized form of the Mittag-Leffler kernel. To observe the behavior of the fractional order plant virus model, numerical simulation is used. Such an inquiry will help to comprehend how the virus behaves and to create defences against infected plants.

Suggested Citation

  • Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002746
    DOI: 10.1016/j.chaos.2023.113373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923002746
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zai-Yin He & Abderrahmane Abbes & Hadi Jahanshahi & Naif D. Alotaibi & Ye Wang, 2022. "Fractional-Order Discrete-Time SIR Epidemic Model with Vaccination: Chaos and Complexity," Mathematics, MDPI, vol. 10(2), pages 1-18, January.
    2. Seadawy, Aly R. & Arshad, Muhammad & Lu, Dianchen, 2020. "The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Saima Rashid & Sobia Sultana & Yeliz Karaca & Aasma Khalid & Yu-Ming Chu, 2022. "Some Further Extensions Considering Discrete Proportional Fractional Operators," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(01), pages 1-12, February.
    5. Benito Chen-Charpentier, 2022. "Delays in Plant Virus Models and Their Stability," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
    6. Shao-Wen Yao & Aqeel Ahmad & Mustafa Inc & Muhammad Farman & Abdul Ghaffar & Ali Akgul, 2022. "Analysis Of Fractional Order Diarrhea Model Using Fractal Fractional Operator," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 30(05), pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Changjin & Farman, Muhammad, 2023. "Qualitative and Ulam–Hyres stability analysis of fractional order cancer-immune model," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    2. Ma, Zhiying & Hou, Jie & Zhu, Wenhao & Peng, Yaxin & Li, Ying, 2023. "PMNN: Physical model-driven neural network for solving time-fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    2. Seadawy, Aly R. & Ali, Safdar & Rizvi, Syed T.R., 2022. "On modulation instability analysis and rogue waves in the presence of external potential: The (n + 1)-dimensional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    6. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Yanan Liao & Kai Yang & Hua Wang & Qingtai Xiao, 2022. "An Alternative Approach for Identifying Nonlinear Dynamics of the Cascade Logistic-Cubic System," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
    10. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Cardoso, Lislaine Cristina & Camargo, Rubens Figueiredo & dos Santos, Fernando Luiz Pio & Dos Santos, José Paulo Carvalho, 2021. "Global stability analysis of a fractional differential system in hepatitis B," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    13. Thomas, Neenu & Jana, Arnab & Bandyopadhyay, Santanu, 2022. "Physical distancing on public transport in Mumbai, India: Policy and planning implications for unlock and post-pandemic period," Transport Policy, Elsevier, vol. 116(C), pages 217-236.
    14. Abdulilah Mohammad Mayet & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & Robert Hanus & Ehsan Nazemi & Igor M. Narozhnyy, 2022. "Extraction of Time-Domain Characteristics and Selection of Effective Features Using Correlation Analysis to Increase the Accuracy of Petroleum Fluid Monitoring Systems," Energies, MDPI, vol. 15(6), pages 1-19, March.
    15. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    16. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    17. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "A Flexible Lockdown by Integrating Public Health and Economic Reactivation to Response the Crisis of COVID-19: Responses to Comments by Alvaro J Idrovo on “An Examination on the Transmission of COVID-," IJERPH, MDPI, vol. 17(21), pages 1-4, November.
    18. Iqbal, Muhammad S. & Seadawy, Aly R. & Baber, Muhammad Z., 2022. "Demonstration of unique problems from Soliton solutions to nonlinear Selkov–Schnakenberg system," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Din, Anwarud & Li, Yongjin & Khan, Tahir & Zaman, Gul, 2020. "Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    20. Yu, Shuhong & Zhou, Yunxiu & Du, Tingsong, 2022. "Certain midpoint-type integral inequalities involving twice differentiable generalized convex mappings and applications in fractal domain," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.