IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i17p2021-d620444.html
   My bibliography  Save this article

Series Solutions of High-Dimensional Fractional Differential Equations

Author

Listed:
  • Jing Chang

    (College of Information Technology, Jilin Agricultural University, Changchun 130118, China)

  • Jin Zhang

    (School of Mathematics, Jilin University, Changchun 130012, China)

  • Ming Cai

    (School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China)

Abstract

In the present paper, the series solutions and the approximate solutions of the time–space fractional differential equations are obtained using two different analytical methods. One is the homotopy perturbation Sumudu transform method (HPSTM), and another is the variational iteration Laplace transform method (VILTM). It is observed that the approximate solutions are very close to the exact solutions. The solutions obtained are very useful and significant to analyze many phenomena, and the solutions have not been reported in previous literature. The salient feature of this work is the graphical presentations of the third approximate solutions for different values of order α .

Suggested Citation

  • Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2021-:d:620444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/17/2021/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/17/2021/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Ji-Huan & Wu, Xu-Hong, 2006. "Exp-function method for nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 700-708.
    2. Fadugba, Sunday Emmanuel, 2020. "Homotopy analysis method and its applications in the valuation of European call options with time-fractional Black-Scholes equation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Zhang, Zizhen, 2020. "A novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Zhang, Zizhen, 2020. "Corrigendum to a novel covid-19 mathematical model with fractional derivatives: Singular and nonsingular kernels [Chaos Solitons & Fractals 139 (2020) 110060]," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Asma Ali Elbeleze & Adem Kılıçman & Bachok M. Taib, 2014. "Note on the Convergence Analysis of Homotopy Perturbation Method for Fractional Partial Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-8, January.
    7. Singh, Jagdev & Kumar, Devendra & Hammouch, Zakia & Atangana, Abdon, 2018. "A fractional epidemiological model for computer viruses pertaining to a new fractional derivative," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 504-515.
    8. Asma Ali Elbeleze & Adem Kılıçman & Bachok M. Taib, 2014. "Convergence of Variational Iteration Method for Solving Singular Partial Differential Equations of Fractional Order," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-11, July.
    9. Momani, Shaher, 2005. "An explicit and numerical solutions of the fractional KdV equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 70(2), pages 110-118.
    10. Jena, Rajarama Mohan & Chakraverty, Snehashish & Jena, Subrat Kumar, 2020. "Analysis of the dynamics of phytoplankton nutrient and whooping cough models with nonsingular kernel arising in the biological system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prakash, Amit & Kaur, Hardish, 2021. "Analysis and numerical simulation of fractional Biswas–Milovic model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 298-315.
    2. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. Rajagopal, Karthikeyan & Jafari, Sajad & Li, Chunbiao & Karthikeyan, Anitha & Duraisamy, Prakash, 2021. "Suppressing spiral waves in a lattice array of coupled neurons using delayed asymmetric synapse coupling," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    5. Saad, Khaled M. & Gómez-Aguilar, J.F. & Almadiy, Abdulrhman A., 2020. "A fractional numerical study on a chronic hepatitis C virus infection model with immune response," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    6. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Dwivedi, Kushal Dhar & Singh, Jagdev, 2021. "Numerical solution of two-dimensional fractional-order reaction advection sub-diffusion equation with finite-difference Fibonacci collocation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 38-50.
    8. Verma, Pratibha & Kumar, Manoj, 2021. "Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    9. Muhammad Imran Asjad & Saif Ur Rehman & Ali Ahmadian & Soheil Salahshour & Mehdi Salimi, 2021. "First Solution of Fractional Bioconvection with Power Law Kernel for a Vertical Surface," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
    10. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    11. Khan, Hasib & Ahmad, Farooq & Tunç, Osman & Idrees, Muhammad, 2022. "On fractal-fractional Covid-19 mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Ghanbari, Behzad & Günerhan, Hatıra & Srivastava, H.M., 2020. "An application of the Atangana-Baleanu fractional derivative in mathematical biology: A three-species predator-prey model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    13. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    14. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Sheng Zhang & Jiao Gao & Bo Xu, 2022. "An Integrable Evolution System and Its Analytical Solutions with the Help of Mixed Spectral AKNS Matrix Problem," Mathematics, MDPI, vol. 10(21), pages 1-16, October.
    16. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    17. ur Rahman, Ghaus & Agarwal, Ravi P. & Din, Qamar, 2019. "Mathematical analysis of giving up smoking model via harmonic mean type incidence rate," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 128-148.
    18. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    19. Ghalib, M. Mansha & Zafar, Azhar A. & Riaz, M. Bilal & Hammouch, Z. & Shabbir, Khurram, 2020. "Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    20. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:17:p:2021-:d:620444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.