IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921004835.html
   My bibliography  Save this article

Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon

Author

Listed:
  • Abboubakar, Hamadjam
  • Kombou, Lausaire Kemayou
  • Koko, Adamou Dang
  • Fouda, Henri Paul Ekobena
  • Kumar, Anoop

Abstract

In this work, we formulate a mathematical model with a non-integer order derivative to investigate typhoid fever transmission dynamics. To combat the spread of this disease in the human community, control measures like vaccination are included in the proposed model. We calculate the epidemiological threshold called the control reproduction number, Rc, and perform the asymptotic stability of the typhoid-free equilibrium point. We prove that the typhoid-free equilibrium for both integer and non-integer models is locally and globally asymptotically stable whenever Rc is less than one. We also prove that both models admit only one endemic equilibrium point which is globally asymptotically stable whenever Rc>1 and no endemic equilibrium point otherwise. This means that the backward bifurcation phenomenon does not occur. In absence of vaccination, Rc is equal to the basic reproduction number R0. We found out that Rc1), and then to predict new cases of typhoid fever per month at Mbandjock in the next new year. To determine model parameters that are responsible for disease spread in the human community, we perform sensitivity analysis (SA). This analysis shows that the vaccination rate, the human-bacteria contact rate, as well as the recovery rate, are the most important parameters in the disease spread. To validate our analytical results, and to see the impact of some control measures in the spread of typhoid fever in the human community, as well as the impact of the fractional-order on typhoid transmission dynamics, we perform several numerical simulations.

Suggested Citation

  • Abboubakar, Hamadjam & Kombou, Lausaire Kemayou & Koko, Adamou Dang & Fouda, Henri Paul Ekobena & Kumar, Anoop, 2021. "Projections and fractional dynamics of the typhoid fever: A case study of Mbandjock in the Centre Region of Cameroon," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004835
    DOI: 10.1016/j.chaos.2021.111129
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921004835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Memon, Zaibunnisa & Qureshi, Sania & Memon, Bisharat Rasool, 2021. "Assessing the role of quarantine and isolation as control strategies for COVID-19 outbreak: A case study," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Shaikh, Amjad S. & Sooppy Nisar, Kottakkaran, 2019. "Transmission dynamics of fractional order Typhoid fever model using Caputo–Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 355-365.
    3. Gao, Wei & Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D. G. & Kumar, Pushpendra, 2020. "A new study of unreported cases of 2019-nCOV epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Jajarmi, Amin & Arshad, Sadia & Baleanu, Dumitru, 2019. "A new fractional modelling and control strategy for the outbreak of dengue fever," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Abdon Atangana & Necdet Bildik, 2013. "Approximate Solution of Tuberculosis Disease Population Dynamics Model," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, June.
    6. Atangana, Abdon, 2020. "Fractional discretization: The African’s tortoise walk," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    7. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Ameen, I. & Baleanu, Dumitru & Ali, Hegagi Mohamed, 2020. "An efficient algorithm for solving the fractional optimal control of SIRV epidemic model with a combination of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    9. Mahmoudi, Mohammad Reza & Baleanu, Dumitru & Mansor, Zulkefli & Tuan, Bui Anh & Pho, Kim-Hung, 2020. "Fuzzy clustering method to compare the spread rate of Covid-19 in the high risks countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Tilahun, Getachew Teshome & Makinde, Oluwole Daniel & Malonza, David, 2018. "Co-dynamics of Pneumonia and Typhoid fever diseases with cost effective optimal control analysis," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 438-459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Pushpendra & Erturk, Vedat Suat, 2021. "Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Amouch, Mohamed & Karim, Noureddine, 2021. "Modeling the dynamic of COVID-19 with different types of transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Nabi, Khondoker Nazmoon & Abboubakar, Hamadjam & Kumar, Pushpendra, 2020. "Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    4. Fatima, Bibi & Zaman, Gul, 2020. "Co-infection of Middle Eastern respiratory syndrome coronavirus and pulmonary tuberculosis," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Mohammed H. Alharbi & Fawaz K. Alalhareth & Mahmoud A. Ibrahim, 2023. "Analyzing the Dynamics of a Periodic Typhoid Fever Transmission Model with Imperfect Vaccination," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    6. Kumar, Pushpendra & Govindaraj, V. & Erturk, Vedat Suat, 2022. "A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Defterli, Ozlem, 2021. "Comparative analysis of fractional order dengue model with temperature effect via singular and non-singular operators," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    8. Kumar, Pushpendra & Erturk, Vedat Suat & Yusuf, Abdullahi & Kumar, Sunil, 2021. "Fractional time-delay mathematical modeling of Oncolytic Virotherapy," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    9. Veeresha, P. & Baskonus, Haci Mehmet & Prakasha, D.G. & Gao, Wei & Yel, Gulnur, 2020. "Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Juhui Yan & Wanqin Wu & Qing Miao & Xuewen Tan, 2024. "Global Dynamics and Optimal Control of a Fractional-Order SIV Epidemic Model with Nonmonotonic Occurrence Rate," Mathematics, MDPI, vol. 12(17), pages 1-21, September.
    11. Nguiwa, Tchule & Kolaye, Gabriel Guilsou & Justin, Mibaile & Moussa, Djaouda & Betchewe, Gambo & Mohamadou, Alidou, 2021. "Dynamic study of SIAISQVR−B fractional-order cholera model with control strategies in Cameroon Far North Region," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Kumar, Pushpendra & Erturk, Vedat Suat & Murillo-Arcila, Marina, 2021. "A complex fractional mathematical modeling for the love story of Layla and Majnun," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    13. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    14. Irena, Tsegaye Kebede & Gakkhar, Sunita, 2021. "Modelling the dynamics of antimicrobial-resistant typhoid infection with environmental transmission," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    15. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Khan, Muhammad Altaf & Atangana, Abdon, 2022. "Mathematical modeling and analysis of COVID-19: A study of new variant Omicron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    17. Abboubakar, Hamadjam & Racke, Reinhard, 2021. "Mathematical modeling, forecasting, and optimal control of typhoid fever transmission dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    18. Gao, Wei & Veeresha, P. & Prakasha, D.G. & Baskonus, Haci Mehmet & Yel, Gulnur, 2020. "New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    19. Abboubakar, Hamadjam & Kouchéré Guidzavaï, Albert & Yangla, Joseph & Damakoa, Irépran & Mouangue, Ruben, 2021. "Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    20. Chaharborj, Sarkhosh Seddighi & Nabi, Khondoker Nazmoon & Feng, Koo Lee & Chaharborj, Shahriar Seddighi & Phang, Pei See, 2022. "Controlling COVID-19 transmission with isolation of influential nodes," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921004835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.