IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v185y2021ics0047259x21000622.html
   My bibliography  Save this article

Asymptotic properties of Bernstein estimators on the simplex

Author

Listed:
  • Ouimet, Frédéric

Abstract

Bernstein estimators are well-known to avoid the boundary bias problem of traditional kernel estimators. The theoretical properties of these estimators have been studied extensively on compact intervals and hypercubes, but never on the simplex, except for the mean squared error of the density estimator in Tenbusch (1994) when d=2. The simplex is an important case as it is the natural domain of compositional data. In this paper, we make an effort to prove several asymptotic results (bias, variance, mean squared error (MSE), mean integrated squared error (MISE), asymptotic normality, uniform strong consistency) for Bernstein estimators of cumulative distribution functions and density functions on the d-dimensional simplex. Our results generalize the ones in Leblanc (2012a) and Babu et al. (2002), who treated the case d=1, and significantly extend those found in Tenbusch (1994). In particular, our rates of convergence for the MSE and MISE are optimal.

Suggested Citation

  • Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000622
    DOI: 10.1016/j.jmva.2021.104784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21000622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sancetta, Alessio, 2007. "Nonparametric estimation of distributions with given marginals via Bernstein-Kantorovich polynomials: L1 and pointwise convergence theory," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1376-1390, August.
    2. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    3. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    4. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727, January.
    5. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    6. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    7. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    8. Axel Tenbusch, 1994. "Two-dimensional Bernstein polynomial density estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 41(1), pages 233-253, December.
    9. Gaku Igarashi & Yoshihide Kakizawa, 2014. "On improving convergence rate of Bernstein polynomial density estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 61-84, March.
    10. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    11. S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
    12. Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
    13. Cheng, Cheng, 1995. "The Bernstein polynomial estimator of a smooth quantile function," Statistics & Probability Letters, Elsevier, vol. 24(4), pages 321-330, September.
    14. Babu, G. Jogesh & Chaubey, Yogendra P., 2006. "Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 959-969, May.
    15. Bruce M. Brown & Song Xi Chen, 1999. "Beta‐Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59, March.
    16. Alexandre Leblanc, 2009. "Chung–Smirnov property for Bernstein estimators of distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 133-142.
    17. Stute, W., 1993. "Consistent Estimation Under Random Censorship When Covariables Are Present," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 89-103, April.
    18. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    19. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    20. J. Aitchison & I. J. Lauder, 1985. "Kernel Density Estimation for Compositional Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 129-137, June.
    21. Bouezmarni, T. & Mesfioui, M. & Rolin, J.M., 2007. "L1-rate of convergence of smoothed histogram," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1497-1504, August.
    22. Chak, Pok Man & Madras, Neal & Smith, Barry, 2005. "Semi-nonparametric estimation with Bernstein polynomials," Economics Letters, Elsevier, vol. 89(2), pages 153-156, November.
    23. Sancetta, Alessio & Satchell, Stephen, 2004. "The Bernstein Copula And Its Applications To Modeling And Approximations Of Multivariate Distributions," Econometric Theory, Cambridge University Press, vol. 20(3), pages 535-562, June.
    24. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2017. "Smooth copula-based estimation of the conditional density function with a single covariate," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 39-48.
    25. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    26. Munoz Perez, Jose & Fernandez Palacin, Ana, 1987. "Estimating the quantile function by Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 5(4), pages 391-397, September.
    27. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    28. Axel Tenbusch, 1997. "Nonparametric curve estimation with bernstein estimates," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 45(1), pages 1-30, January.
    29. Yoshihide Kakizawa, 2006. "Bernstein polynomial estimation of a spectral density," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 253-287, March.
    30. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    31. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    32. Albers, C. J. & Schaafsma, W., 2003. "Estimating a density by adapting an initial guess," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 27-36, February.
    33. Belalia, Mohamed & Bouezmarni, Taoufik & Leblanc, Alexandre, 2017. "Smooth conditional distribution estimators using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 166-182.
    34. Dou, Xiaoling & Kuriki, Satoshi & Lin, Gwo Dong & Richards, Donald, 2016. "EM algorithms for estimating the Bernstein copula," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 228-245.
    35. M. Belalia & T. Bouezmarni & F. C. Lemyre & A. Taamouti, 2017. "Testing independence based on Bernstein empirical copula and copula density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 346-380, April.
    36. repec:dau:papers:123456789/3984 is not listed on IDEAS
    37. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    38. Sonia Petrone, 1999. "Random Bernstein Polynomials," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 373-393, September.
    39. Bouezmarni, Taoufik & Scaillet, Olivier, 2005. "Consistency Of Asymmetric Kernel Density Estimators And Smoothed Histograms With Application To Income Data," Econometric Theory, Cambridge University Press, vol. 21(2), pages 390-412, April.
    40. W. Gawronski & U. Stadtmüller, 1981. "Smoothing histograms by means of lattice-and continuous distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 28(1), pages 155-164, December.
    41. Asma Jmaei & Yousri Slaoui & Wassima Dellagi, 2017. "Recursive distribution estimator defined by stochastic approximation method using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 792-805, October.
    42. Andrés F. Barrientos & Alejandro Jara & Fernando A. Quintana, 2017. "Fully Nonparametric Regression for Bounded Data Using Dependent Bernstein Polynomials," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 806-825, April.
    43. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    44. Turnbull, Bradley C. & Ghosh, Sujit K., 2014. "Unimodal density estimation using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 13-29.
    45. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.
    46. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    47. de Bruin, R. & Salome, D. & Schaafsma, W., 1999. "A semi-Bayesian method for nonparametric density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 19-30, March.
    48. Liu, Bowen & Ghosh, Sujit K., 2020. "On empirical estimation of mode based on weakly dependent samples," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    49. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
    50. Babu, Gutti Jogesh & Singh, Kesar, 1978. "On deviations between empirical and quantile processes for mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 8(4), pages 532-549, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    4. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    5. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    6. Bouezmarni, Taoufik & El Ghouch, Anouar, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    8. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    9. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    10. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    11. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    12. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    13. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    14. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    15. Belalia, Mohamed & Bouezmarni, Taoufik & Leblanc, Alexandre, 2017. "Smooth conditional distribution estimators using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 166-182.
    16. Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
    17. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    18. repec:cte:wsrepe:ws131211 is not listed on IDEAS
    19. Eddie Anderson & Artem Prokhorov & Yajing Zhu, 2020. "A Simple Estimator of Two‐Dimensional Copulas, with Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1375-1412, December.
    20. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    21. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:185:y:2021:i:c:s0047259x21000622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.