IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v28y2016i2p250-271.html
   My bibliography  Save this article

Efficient and robust density estimation using Bernstein type polynomials

Author

Listed:
  • Zhong Guan

Abstract

A method of parameterising and smoothing the unknown underlying distributions using Bernstein type polynomials with positive coefficients is proposed, verified and investigated. Any distribution with bounded and smooth enough density can be approximated by the proposed model which turns out to be a mixture of the beta distributions, beta , , for some optimal degree m . A simple change-point estimating method for choosing the optimal degree m of the approximate model is presented. The proposed method gives a maximum likelihood density estimate which is consistent in distance at a nearly parametric rate under some conditions. Simulation study shows that one can benefit from both the smoothness and the efficiency by using the proposed method which can also be used to estimate some population parameters such as the mean. The proposed methods are applied to three data sets of different types.

Suggested Citation

  • Zhong Guan, 2016. "Efficient and robust density estimation using Bernstein type polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 250-271, June.
  • Handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:250-271
    DOI: 10.1080/10485252.2016.1163349
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2016.1163349
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2016.1163349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong Guan, 2017. "Bernstein polynomial model for grouped continuous data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 831-848, October.
    2. Aurélie Bertrand & Ingrid Van Keilegom & Catherine Legrand, 2019. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," Biometrics, The International Biometric Society, vol. 75(1), pages 297-307, March.
    3. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    5. Bertrand, Aurelie & Van Keilegom, Ingrid & Legrand, Catherine, 2017. "Flexible parametric approach to classical measurement error variance estimation without auxiliary data," LIDAM Discussion Papers ISBA 2017025, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Wang, Tao & Guan, Zhong, 2023. "Choice of degree of Bernstein polynomial model," Statistics & Probability Letters, Elsevier, vol. 200(C).
    7. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    8. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    9. Dongliang Wang & Xueya Cai, 2021. "Smooth ROC curve estimation via Bernstein polynomials," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-12, May.
    10. Cheng, Xueqin & Li, Yanpeng, 2022. "An improved Hoeffding’s inequality for sum of independent random variables," Statistics & Probability Letters, Elsevier, vol. 183(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:28:y:2016:i:2:p:250-271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.