IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i5p961-976.html
   My bibliography  Save this article

A variable selection approach to monotonic regression with Bernstein polynomials

Author

Listed:
  • S. McKay Curtis
  • Sujit K. Ghosh

Abstract

One of the standard problems in statistics consists of determining the relationship between a response variable and a single predictor variable through a regression function. Background scientific knowledge is often available that suggests that the regression function should have a certain shape (e.g. monotonically increasing or concave) but not necessarily a specific parametric form. Bernstein polynomials have been used to impose certain shape restrictions on regression functions. The Bernstein polynomials are known to provide a smooth estimate over equidistant knots. Bernstein polynomials are used in this paper due to their ease of implementation, continuous differentiability, and theoretical properties. In this work, we demonstrate a connection between the monotonic regression problem and the variable selection problem in the linear model. We develop a Bayesian procedure for fitting the monotonic regression model by adapting currently available variable selection procedures. We demonstrate the effectiveness of our method through simulations and the analysis of real data.

Suggested Citation

  • S. McKay Curtis & Sujit K. Ghosh, 2011. "A variable selection approach to monotonic regression with Bernstein polynomials," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 961-976, February.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:961-976
    DOI: 10.1080/02664761003692423
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664761003692423
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664761003692423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ander Wilson & Jessica Tryner & Christian L'Orange & John Volckens, 2020. "Bayesian nonparametric monotone regression," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Kevin Murray & Samuel Müller & Berwin Turlach, 2013. "Revisiting fitting monotone polynomials to data," Computational Statistics, Springer, vol. 28(5), pages 1989-2005, October.
    4. Yang Liu & Xiaojing Wang, 2020. "Bayesian Nonparametric Monotone Regression of Dynamic Latent Traits in Item Response Theory Models," Journal of Educational and Behavioral Statistics, , vol. 45(3), pages 274-296, June.
    5. Ander Wilson & David M. Reif & Brian J. Reich, 2014. "Hierarchical dose–response modeling for high-throughput toxicity screening of environmental chemicals," Biometrics, The International Biometric Society, vol. 70(1), pages 237-246, March.
    6. Manté, Claude, 2015. "Iterated Bernstein operators for distribution function and density estimation: Balancing between the number of iterations and the polynomial degree," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 68-84.
    7. Roldán López de Hierro, Antonio Francisco & Martínez-Moreno, Juan & Aguilar Peña, Concepción & Roldán López de Hierro, Concepción, 2016. "A fuzzy regression approach using Bernstein polynomials for the spreads: Computational aspects and applications to economic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 13-25.
    8. Taeryon Choi & Hea-Jung Kim & Seongil Jo, 2016. "Bayesian variable selection approach to a Bernstein polynomial regression model with stochastic constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2751-2771, November.
    9. Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
    10. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    11. Wang, J. & Ghosh, S.K., 2012. "Shape restricted nonparametric regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2729-2741.
    12. Ghosal, Rahul & Ghosh, Sujit & Urbanek, Jacek & Schrack, Jennifer A. & Zipunnikov, Vadim, 2023. "Shape-constrained estimation in functional regression with Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:5:p:961-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.