IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i1p79-100.html
   My bibliography  Save this article

Consistency of Bernstein polynomial posteriors

Author

Listed:
  • Sonia Petrone
  • Larry Wasserman

Abstract

A Bernstein prior is a probability measure on the space of all the distribution functions on [0, 1]. Under very general assumptions, it selects absolutely continuous distribution functions, whose densities are mixtures of known beta densities. The Bernstein prior is of interest in Bayesian nonparametric inference with continuous data. We study the consistency of the posterior from a Bernstein prior. We first show that, under mild assumptions, the posterior is weakly consistent for any distribution function P0 on [0, 1] with continuous and bounded Lebesgue density. With slightly stronger assumptions on the prior, the posterior is also Hellinger consistent. This implies that the predictive density from a Bernstein prior, which is a Bayesian density estimate, converges in the Hellinger sense to the true density (assuming that it is continuous and bounded). We also study a sieve maximum likelihood version of the density estimator and show that it is also Hellinger consistent under weak assumptions. When the order of the Bernstein polynomial, i.e. the number of components in the beta distribution mixture, is truncated, we show that under mild restrictions the posterior concentrates on the set of pseudotrue densities. Finally, we study the behaviour of the predictive density numerically and we also study a hybrid Bayes–maximum likelihood density estimator.

Suggested Citation

  • Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100, January.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:1:p:79-100
    DOI: 10.1111/1467-9868.00326
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00326
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00326?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:1:p:79-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.