IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v73y2021i6d10.1007_s10463-020-00783-y.html
   My bibliography  Save this article

Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators

Author

Listed:
  • Ariane Hanebeck

    (Technical University of Munich)

  • Bernhard Klar

    (Karlsruhe Institute of Technology)

Abstract

In this paper, we introduce a new smooth estimator for continuous distribution functions on the positive real half-line using Szasz–Mirakyan operators, similar to Bernstein’s approximation theorem. We show that the proposed estimator outperforms the empirical distribution function in terms of asymptotic (integrated) mean-squared error and generally compares favorably with other competitors in theoretical comparisons. Also, we conduct the simulations to demonstrate the finite sample performance of the proposed estimator.

Suggested Citation

  • Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
  • Handle: RePEc:spr:aistmt:v:73:y:2021:i:6:d:10.1007_s10463-020-00783-y
    DOI: 10.1007/s10463-020-00783-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-020-00783-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-020-00783-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yousri Slaoui, 2014. "Bandwidth Selection for Recursive Kernel Density Estimators Defined by Stochastic Approximation Method," Journal of Probability and Statistics, Hindawi, vol. 2014, pages 1-11, June.
    2. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    3. Choongrak Kim & Sungsoo Kim & Mira Park & Hakbae Lee, 2006. "A bias reducing technique in kernel distribution function estimation," Computational Statistics, Springer, vol. 21(3), pages 589-601, December.
    4. M. Falk, 1983. "Relative efficiency and deficiency of kernel type estimators of smooth distribution functions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 37(2), pages 73-83, June.
    5. Asma Jmaei & Yousri Slaoui & Wassima Dellagi, 2017. "Recursive distribution estimator defined by stochastic approximation method using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 792-805, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Stephanou & Melvin Varughese, 2021. "On the properties of hermite series based distribution function estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 535-559, May.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Bouzebda, Salim & Slaoui, Yousri, 2022. "Nonparametric recursive method for moment generating function kernel-type estimators," Statistics & Probability Letters, Elsevier, vol. 184(C).
    4. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    5. Slaoui Yousri, 2019. "Optimal bandwidth selection for recursive Gumbel kernel density estimators," Dependence Modeling, De Gruyter, vol. 7(1), pages 375-393, January.
    6. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    7. Falk, Michael & Reiss, Rolf-Dieter, 2003. "Efficient estimators and LAN in canonical bivariate POT models," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 190-207, January.
    8. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Papers 2011.00909, arXiv.org, revised Mar 2021.
    9. Alevizos, Filippos & Bagkavos, Dimitrios & Ioannides, Dimitrios, 2019. "Efficient estimation of a distribution function based on censored data," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 359-364.
    10. Dietmar Pfeifer & Olena Ragulina, 2020. "Adaptive Bernstein Copulas and Risk Management," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    11. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    12. Salim Bouzebda & Yousri Slaoui, 2023. "Nonparametric Recursive Estimation for Multivariate Derivative Functions by Stochastic Approximation Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 658-690, February.
    13. Slaoui Yousri & Khardani Salah, 2020. "Nonparametric relative recursive regression," Dependence Modeling, De Gruyter, vol. 8(1), pages 221-238, January.
    14. Paolo Brunori & Guido Neidhöfer, 2021. "The Evolution of Inequality of Opportunity in Germany: A Machine Learning Approach," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(4), pages 900-927, December.
    15. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    16. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    17. Ralescu, Stefan S. & Puri, Madan L., 1996. "Weak convergence of sequences of first passage processes and applications," Stochastic Processes and their Applications, Elsevier, vol. 62(2), pages 327-345, July.
    18. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    19. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    20. Serge B. Provost & Yishan Zang, 2024. "Nonparametric Copula Density Estimation Methodologies," Mathematics, MDPI, vol. 12(3), pages 1-35, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:73:y:2021:i:6:d:10.1007_s10463-020-00783-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.