IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v29y2017i4p792-805.html
   My bibliography  Save this article

Recursive distribution estimator defined by stochastic approximation method using Bernstein polynomials

Author

Listed:
  • Asma Jmaei
  • Yousri Slaoui
  • Wassima Dellagi

Abstract

We propose a recursive distribution estimator using Robbins-Monro's algorithm and Bernstein polynomials. We study the properties of the recursive estimator, as a competitor of Vitale's distribution estimator. We show that, with optimal parameters, our proposal dominates Vitale's estimator in terms of the mean integrated squared error. Finally, we confirm theoretical result throught a simulation study.

Suggested Citation

  • Asma Jmaei & Yousri Slaoui & Wassima Dellagi, 2017. "Recursive distribution estimator defined by stochastic approximation method using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 792-805, October.
  • Handle: RePEc:taf:gnstxx:v:29:y:2017:i:4:p:792-805
    DOI: 10.1080/10485252.2017.1369538
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2017.1369538
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2017.1369538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slaoui, Yousri, 2019. "Wild bootstrap bandwidth selection of recursive nonparametric relative regression for independent functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 494-511.
    2. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    3. Yousri Slaoui, 2021. "Recursive non-parametric kernel classification rule estimation for independent functional data," Computational Statistics, Springer, vol. 36(1), pages 79-112, March.
    4. Slaoui Yousri, 2019. "Optimal bandwidth selection for recursive Gumbel kernel density estimators," Dependence Modeling, De Gruyter, vol. 7(1), pages 375-393, January.
    5. Stephanou, Michael & Varughese, Melvin, 2021. "Sequential estimation of Spearman rank correlation using Hermite series estimators," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    6. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    7. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    8. Ariane Hanebeck & Bernhard Klar, 2021. "Smooth distribution function estimation for lifetime distributions using Szasz–Mirakyan operators," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(6), pages 1229-1247, December.
    9. Michael Stephanou & Melvin Varughese, 2021. "On the properties of hermite series based distribution function estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(4), pages 535-559, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:29:y:2017:i:4:p:792-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.