IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i1p61-84.html
   My bibliography  Save this article

On improving convergence rate of Bernstein polynomial density estimator

Author

Listed:
  • Gaku Igarashi
  • Yoshihide Kakizawa

Abstract

This paper is concerned with the Bernstein estimator [Vitale, R.A. (1975), 'A Bernstein Polynomial Approach to Density Function Estimation', in Statistical Inference and Related Topics , ed. M.L. Puri, 2, New York: Academic Press, pp. 87-99] to estimate a density with support [0, 1]. One of the major contributions of this paper is an application of a multiplicative bias correction [Terrell, G.R., and Scott, D.W. (1980), 'On Improving Convergence Rates for Nonnegative Kernel Density Estimators', The Annals of Statistics , 8, 1160-1163], which was originally developed for the standard kernel estimator. Moreover, the renormalised multiplicative bias corrected Bernstein estimator is studied rigorously. The mean squared error (MSE) in the interior and mean integrated squared error of the resulting bias corrected Bernstein estimators as well as the additive bias corrected Bernstein estimator [Leblanc, A. (2010), 'A Bias-reduced Approach to Density Estimation Using Bernstein Polynomials', Journal of Nonparametric Statistics , 22, 459-475] are shown to be O ( n -super- - 8/9) when the underlying density has a fourth-order derivative, where n is the sample size. The condition under which the MSE near the boundary is O ( n -super- - 8/9) is also discussed. Finally, numerical studies based on both simulated and real data sets are presented.

Suggested Citation

  • Gaku Igarashi & Yoshihide Kakizawa, 2014. "On improving convergence rate of Bernstein polynomial density estimator," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 61-84, March.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:61-84
    DOI: 10.1080/10485252.2013.827195
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.827195
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.827195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    2. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    3. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    4. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    5. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    6. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    3. Gaku Igarashi, 2016. "Bias reductions for beta kernel estimation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 1-30, March.
    4. Igarashi, Gaku & Kakizawa, Yoshihide, 2014. "Re-formulation of inverse Gaussian, reciprocal inverse Gaussian, and Birnbaum–Saunders kernel estimators," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 235-246.
    5. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    6. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    7. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    8. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    9. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    10. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    11. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    12. Gaku Igarashi, 2018. "Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 247-266, August.
    13. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    14. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    15. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    16. Hirukawa, Masayuki & Sakudo, Mari, 2019. "Another bias correction for asymmetric kernel density estimation with a parametric start," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 158-165.
    17. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    18. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    19. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    20. Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:1:p:61-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.