IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v152y2020ics0167947320301377.html
   My bibliography  Save this article

On empirical estimation of mode based on weakly dependent samples

Author

Listed:
  • Liu, Bowen
  • Ghosh, Sujit K.

Abstract

Given a large sample of observations from an unknown univariate continuous distribution, it is often of interest to empirically estimate the global mode of the underlying density. Applications include samples obtained by Monte Carlo methods with independent observations, or Markov Chain Monte Carlo methods with weakly dependent samples from the underlying stationary density. In either case, often the generating density is not available in closed form and only empirical determination of the mode is possible. Assuming that the generating density has a unique global mode, a non-parametric estimate of the density is proposed based on a sequence of mixtures of Beta densities which allows for the estimation of the mode even when the mode is possibly located on the boundary of the support of the density. Furthermore, the estimated mode is shown to be strongly universally consistent under a set of mild regularity conditions. The proposed method is compared with other empirical estimates of the mode based on popular kernel density estimates. Numerical results based on extensive simulation studies show benefits of the proposed methods in terms of empirical bias, standard errors and computation time. An R package implementing the method is also made available online.

Suggested Citation

  • Liu, Bowen & Ghosh, Sujit K., 2020. "On empirical estimation of mode based on weakly dependent samples," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  • Handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301377
    DOI: 10.1016/j.csda.2020.107046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320301377
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babu, G. Jogesh & Chaubey, Yogendra P., 2006. "Smooth estimation of a distribution and density function on a hypercube using Bernstein polynomials for dependent random vectors," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 959-969, May.
    2. Turnbull, Bradley C. & Ghosh, Sujit K., 2014. "Unimodal density estimation using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 13-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    4. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.
    5. Baker, Rose, 2008. "An order-statistics-based method for constructing multivariate distributions with fixed marginals," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2312-2327, November.
    6. Burns, Christopher & Prager, Daniel & Ghosh, Sujit & Goodwin, Barry, 2015. "Imputing for Missing Data in the ARMS Household Section: A Multivariate Imputation Approach," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205291, Agricultural and Applied Economics Association.
    7. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    8. Ghosh, Sujit K. & Burns, Christopher B. & Prager, Daniel L. & Zhang, Li & Hui, Glenn, 2018. "On nonparametric estimation of the latent distribution for ordinal data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 86-98.
    9. Alexandre Leblanc, 2009. "Chung–Smirnov property for Bernstein estimators of distribution functions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 133-142.
    10. Belalia, Mohamed, 2016. "On the asymptotic properties of the Bernstein estimator of the multivariate distribution function," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 249-256.
    11. Lu, Lu, 2015. "On the uniform consistency of the Bernstein density estimator," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 52-61.
    12. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    13. Nour-Eddine Berrahou & Salim Bouzebda & Lahcen Douge, 2024. "The Bahadur Representation for Empirical and Smooth Quantile Estimators Under Association," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-37, June.
    14. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    15. Belalia, Mohamed & Bouezmarni, Taoufik & Leblanc, Alexandre, 2017. "Smooth conditional distribution estimators using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 166-182.
    16. Zhou, Haiming & Huang, Xianzheng, 2022. "Bayesian beta regression for bounded responses with unknown supports," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    17. Dawei Lu & Lina Wang, 2021. "On the Rates of Asymptotic Normality for Bernstein Polynomial Estimators in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1519-1536, December.
    18. Janssen, Paul & Swanepoel, Jan & Veraverbeke, Noël, 2014. "A note on the asymptotic behavior of the Bernstein estimator of the copula density," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 480-487.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:152:y:2020:i:c:s0167947320301377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.