IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v26y1999i1p47-59.html
   My bibliography  Save this article

Beta‐Bernstein Smoothing for Regression Curves with Compact Support

Author

Listed:
  • Bruce M. Brown
  • Song Xi Chen

Abstract

ABSTRACT. The problem of boundary bias is associated with kernel estimation for regression curves with compact support. This paper proposes a simple and uni(r)ed approach for remedying boundary bias in non‐parametric regression, without dividing the compact support into interior and boundary areas and without applying explicitly different smoothing treatments separately. The approach uses the beta family of density functions as kernels. The shapes of the kernels vary according to the position where the curve estimate is made. Theyare symmetric at the middle of the support interval, and become more and more asymmetric nearer the boundary points. The kernels never put any weight outside the data support interval, and thus avoid boundary bias. The method is a generalization of classical Bernstein polynomials, one of the earliest methods of statistical smoothing. The proposed estimator has optimal mean integrated squared error at an order of magnitude n−4/5, equivalent to that of standard kernel estimators when the curve has an unbounded support.

Suggested Citation

  • Bruce M. Brown & Song Xi Chen, 1999. "Beta‐Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59, March.
  • Handle: RePEc:bla:scjsta:v:26:y:1999:i:1:p:47-59
    DOI: 10.1111/1467-9469.00136
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9469.00136
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9469.00136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    2. Eduardo Fé, 2010. "An application of local linear regression with asymmetric kernels to regression discontinuity designs," Economics Discussion Paper Series 1016, Economics, The University of Manchester.
    3. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    4. Taamouti, Abderrahim & Bouezmarni, Taoufik & El Ghouch, Anouar, 2014. "Nonparametric estimation and inference for conditional density based Granger causality measures," Journal of Econometrics, Elsevier, vol. 180(2), pages 251-264.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Marcelo Fernandes & Paulo Monteiro, 2005. "Central limit theorem for asymmetric kernel functionals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 425-442, September.
    7. Bouezmarni, Taoufik & Rombouts, Jeroen V. K., 2008. "Asymptotic properties of the Bernstein density copula for dependent data," UC3M Working papers. Economics we083619, Universidad Carlos III de Madrid. Departamento de Economía.
    8. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    9. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    10. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    11. Chen, Rongda & Zhou, Hanxian & Jin, Chenglu & Zheng, Wei, 2019. "Modeling of recovery rate for a given default by non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    12. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    13. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    14. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    15. Ummul Abdul Rauf & Panlop Zeephongsekul, 2014. "Analysis of Rainfall Severity and Duration in Victoria, Australia using Non-parametric Copulas and Marginal Distributions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4835-4856, October.
    16. Bouezmarni, Taoufik & El Ghouch, Anouar, 2011. "Bernstein estimator for unbounded density copula," UC3M Working papers. Economics we1143, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Morten L Bech & Yvan Lengwiler, 2012. "The financial crisis and the changing dynamics of the yield curve," BIS Papers chapters, in: Bank for International Settlements (ed.), Threat of fiscal dominance?, volume 65, pages 257-276, Bank for International Settlements.
    18. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    19. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    20. Shahid Latif & Slobodan P. Simonovic, 2022. "Nonparametric Approach to Copula Estimation in Compounding The Joint Impact of Storm Surge and Rainfall Events in Coastal Flood Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(14), pages 5599-5632, November.
    21. Xiaodong Jin & Janusz Kawczak, 2003. "Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 103-124, May.
    22. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    23. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    24. Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," Working Papers hal-03880243, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:26:y:1999:i:1:p:47-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.