IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v119y2018icp62-72.html
   My bibliography  Save this article

Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction

Author

Listed:
  • Monama, Gobeng R.
  • Mdluli, Siyabonga B.
  • Mashao, Gloria
  • Makhafola, Mogwasha D.
  • Ramohlola, Kabelo E.
  • Molapo, Kerileng M.
  • Hato, Mpitloane J.
  • Makgopa, Katlego
  • Iwuoha, Emmanuel I.
  • Modibane, Kwena D.

Abstract

Pd-supported copper phthalocyanine/metal organic frameworks (Pd@CuPc/MOF) composite was synthesized by the reaction between CuPc and MOF followed by electroless Pd plating. The structural properties of MOF, Pd@MOF and Pd@CuPc/MOF composite were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), simultaneous thermal analysis (STA), ultraviolet–visible spectroscopy (UV–vis), scanning electron microscopy (SEM/EDS) and Brunauer-Emmett-Teller (BET). The XRD, UV–vis and FTIR analyses showed that Pd was coated on CuPc/MOF composite. SEM and EDS results revealed that Pd nanoparticles were well-dispersed and anchored tightly on the composite. The thermal stability of MOF increased upon addition of Pd and CuPc. The electrochemical hydrogen evolution reaction (HER) performance of the synthesized materials was studied by cyclic voltammetry (CV) and Tafel analysis. The Tafel slope of the composite was 176.9 mV/dec and the transfer coefficient of 0.67 which is close to 0.5. The HER results revealed that the Pd@CuPc/MOF composite has better catalytic characteristic such as high catalytic activity and lowest onset potential compared to MOF. More importantly, the significant enhancement of HER performance at ambient temperature for the composite with Pd content can be ascribed to the hydrogen spillover mechanism in such system.

Suggested Citation

  • Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
  • Handle: RePEc:eee:renene:v:119:y:2018:i:c:p:62-72
    DOI: 10.1016/j.renene.2017.11.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117311850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.11.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahale, Nilesh K. & Ingle, Sopan T., 2017. "Electrocatalytic hydrogen evolution reaction on nano-nickel decorated graphene electrode," Energy, Elsevier, vol. 119(C), pages 872-878.
    2. Ojani, Reza & Valiollahi, Roudabeh & Raoof, Jahan-Bakhsh, 2014. "Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction," Energy, Elsevier, vol. 74(C), pages 871-876.
    3. Raoof, Jahan-Bakhsh & Hosseini, Sayed Reza & Ojani, Reza & Mandegarzad, Sakineh, 2015. "MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction," Energy, Elsevier, vol. 90(P1), pages 1075-1081.
    4. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    5. Idan Hod & Pravas Deria & Wojciech Bury & Joseph E. Mondloch & Chung-Wei Kung & Monica So & Matthew D. Sampson & Aaron W. Peters & Cliff P. Kubiak & Omar K. Farha & Joseph T. Hupp, 2015. "A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    6. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2016. "Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 850-866.
    7. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, Behzad & Dinari, Mohammad, 2016. "Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism," Energy, Elsevier, vol. 99(C), pages 103-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Munonde, Tshimangadzo S. & Zheng, Haitao & Matseke, Mphoma S. & Nomngongo, Philiswa N. & Wang, Yi & Tsiakaras, Panagiotis, 2020. "A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 704-714.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafa Ahmed & Mohamed Abdelrahem & Ibrahim Harbi & Ralph Kennel, 2020. "An Adaptive Model-Based MPPT Technique with Drift-Avoidance for Grid-Connected PV Systems," Energies, MDPI, vol. 13(24), pages 1-25, December.
    2. Qolipour, Mojtaba & Mostafaeipour, Ali & Tousi, Omid Mohseni, 2017. "Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 113-123.
    3. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    4. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    5. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    6. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    7. Zaffar Ahmed Shaikh & Polina Datsyuk & Laura M. Baitenova & Larisa Belinskaja & Natalia Ivolgina & Gulmira Rysmakhanova & Tomonobu Senjyu, 2022. "Effect of the COVID-19 Pandemic on Renewable Energy Firm’s Profitability and Capitalization," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    8. Zhu, Min & Chen, Shiyi & Soomro, Ahsanullah & Hu, Jun & Sun, Zhao & Ma, Shiwei & Xiang, Wenguo, 2018. "Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation," Applied Energy, Elsevier, vol. 225(C), pages 912-921.
    9. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    10. Min Wang & Xiaobin Dong & Youchun Zhai, 2021. "Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage," Energies, MDPI, vol. 14(21), pages 1-12, October.
    11. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    12. Macedo, M. Salomé & Soria, M.A. & Madeira, Luis M., 2021. "Process intensification for hydrogen production through glycerol steam reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Lazaroiu, Gheorghe & Pop, Elena & Negreanu, Gabriel & Pisa, Ionel & Mihaescu, Lucian & Bondrea, Andreya & Berbece, Viorel, 2017. "Biomass combustion with hydrogen injection for energy applications," Energy, Elsevier, vol. 127(C), pages 351-357.
    14. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Yousefi, Hossein, 2017. "Energy hub: From a model to a concept – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1512-1527.
    15. Sagir, Emrah & Alipour, Siamak, 2021. "Photofermentative hydrogen production by immobilized photosynthetic bacteria: Current perspectives and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    17. Satar, Ibdal & Daud, Wan Ramli Wan & Kim, Byung Hong & Somalu, Mahendra Rao & Ghasemi, Mostafa, 2017. "Immobilized mixed-culture reactor (IMcR) for hydrogen and methane production from glucose," Energy, Elsevier, vol. 139(C), pages 1188-1196.
    18. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    19. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    20. Gilbert Fridgen & Marc-Fabian Körner & Steffen Walters & Martin Weibelzahl, 2021. "Not All Doom and Gloom: How Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 243-256, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:119:y:2018:i:c:p:62-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.